
Target for TI C2000™ 2
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Target for TI C2000 User’s Guide

© COPYRIGHT 2003–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
November 2003 Online only New for Version 1.0 (Release 13SP1+)
June 2003 Online only New for Version 1.1 (Release 14)
October 2004 Online only Revised for Version 1.1.1 (Release 14SP1)
December 2004 Online only Revised for Version 1.2 (Release 14SP1+)
March 2005 Online only Revised for Version 1.2.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.3 (Release 14SP3)
March 2006 Online only Revised for Version 2.0 (Release 2006a)
September 2006 Online only Revised for Version 2.1 (Release 2006b)
March 2007 Online only Revised for Version 2.2 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)

Contents

Getting Started

1
What Is Target for TI C2000? . 1-2

Introduction . 1-2
Overview of Target for TI C2000 . 1-2
Suitable Applications . 1-2

Setting Up and Configuring . 1-4
Platform Requirements — Hardware and Operating

System . 1-4
Supported Hardware for Targets . 1-4
Software Requirements . 1-6
Verifying the Configuration . 1-7

Target for TI C2000 and Code Composer Studio 1-10
Using Code Composer Studio with Target for TI C2000 . . . 1-10
Default Project Configuration . 1-10

Data Type Support . 1-12

Scheduling and Timing . 1-13
Overview . 1-13
Timer-Based Interrupt Processing . 1-13
Asynchronous Interrupt Processing 1-14

Overview of Creating Models for Targeting 1-19
Accessing the Target for TI C2000 Block Library 1-19
Online Help . 1-20
Blocks with Restrictions . 1-20
S-Function Builder Blocks . 1-22
Setting Simulation Configuration Parameters 1-22
Building Your Model . 1-23

Using the c2000lib Blockset . 1-25
Introduction . 1-25

v

Hardware Setup . 1-25
Starting the c2000lib Library . 1-26
Setting Up the Model . 1-27
Adding Blocks to the Model . 1-31
Generating Code from the Model . 1-33

Configuring Timing Parameters for CAN Blocks

2
Blocks Where the Bit Rate Cannot Be Set Directly 2-2

Setting Timing Parameters . 2-3
Accessing the Timing Parameters . 2-3
Equations for Bit Rate Calculation 2-5
CAN Bit Timing Examples . 2-7

Parameter Tuning and Signal Logging 2-9
Overview . 2-9
Using External Mode . 2-9
Using a Third Party Calibration Tool 2-18

Configuring Acquisition Window Width for ADC
Blocks

3
What Is an Acquisition Window? . 3-2

Configuring ADC Parameters for Acquisition Window
Width . 3-5
Accessing the ADC Parameters . 3-5
Examples . 3-7

vi Contents

Creating Stand-Alone Applications by Saving
Code into Flash Memory

4
The Need for Stand-Alone Applications 4-2

Generating Code for Flash Memory 4-3

Running Code from Flash Memory 4-4

Using the IQmath Library

5
About the IQmath Library . 5-2

Introduction . 5-2
Common Characteristics . 5-3

Fixed-Point Numbers . 5-4
Notation . 5-4
Signed Fixed-Point Numbers . 5-5
Q Format Notation . 5-5

Building Models . 5-9
Overview . 5-9
Converting Data Types . 5-9
Using Sources and Sinks . 5-10
Choosing Blocks to Optimize Code . 5-10

Blocks — By Category

6
C2000 Target Preferences (c2000tgtpreflib) 6-2

Host-Side CAN Blocks (c2000canlib) 6-3

vii

Host-Side SCI Blocks (c2000scilib) 6-4

C2000 RTDX Instrumentation (rtdxBlocks) 6-5

C280x DSP Chip Support (c280xdspchiplib) 6-6

C281x DSP Chip Support (c281xdspchiplib) 6-8

C28x Digital Motor Control (c28xdmclib) 6-10

C28x IQmath (tiiqmathlib) . 6-11

Blocks — Alphabetical List

7

Index

viii Contents

1

Getting Started

What Is Target for TI C2000? (p. 1-2) Introduces Target for TI C2000 and
describes some of its features and
supported hardware

Setting Up and Configuring (p. 1-4) Describes the software and hardware
required to use Target for TI C2000™
and how to set them up

Target for TI C2000 and Code
Composer Studio (p. 1-10)

Provides information about Code
Composer Studio™

Data Type Support (p. 1-12) Compares the data types supported
by Simulink and the TI C2000
processors

Scheduling and Timing (p. 1-13) Provides information about TI C2000
scheduling

Overview of Creating Models for
Targeting (p. 1-19)

Summarizes the steps required to
create models for your target

Using the c2000lib Blockset (p. 1-25) Provides an example of creating a
model and targeting hardware

1 Getting Started

What Is Target for TI C2000?

In this section...

“Introduction” on page 1-2

“Overview of Target for TI C2000” on page 1-2

“Suitable Applications” on page 1-2

Introduction
This chapter describes how to use Target for TI C2000™ to create and execute
applications on Texas Instruments C2000 development boards. To use the
targeting software, you should be familiar with using Simulink® to create
models and with the basic concepts of Real-Time Workshop® automatic code
generation. To read more about Real-Time Workshop, refer to the “Real-Time
Workshop” documentation.

Overview of Target for TI C2000
Target for TI C2000 integrates Simulink and MATLAB® with Texas
Instruments eXpressDSP™ tools. You can use this product to develop and
validate digital signal processing and control designs from concept through
code.

Target for TI C2000 uses C code generated by Real-Time Workshop® and your
TI development tools to generate a C language real-time implementation of
your Simulink model. Real-Time Workshop builds a Code Composer Studio™
project from the C code.

You can compile, link, download, and execute the generated code on an F2808
or F2812 eZdsp™ DSP board from Spectrum Digital, Inc. or on a custom
board based on a TI C280x or C281x chip.

Suitable Applications
The Target for TI C2000 enables you to develop digital signal processing and
control applications. Some important characteristics of the applications that
you can develop are

1-2

What Is Target for TI C2000?

• Asynchronous scheduling

• Flash-based standalone applications

• Fixed-point arithmetic

• Single rate

• Multirate

• Adaptive

• Frame based

1-3

1 Getting Started

Setting Up and Configuring

In this section...

“Platform Requirements — Hardware and Operating System” on page 1-4

“Supported Hardware for Targets” on page 1-4

“Software Requirements” on page 1-6

“Verifying the Configuration” on page 1-7

Platform Requirements — Hardware and Operating
System
To run Target for TI C2000, your host PC must meet the following hardware
configuration requirements:

• Intel Pentium or Intel Pentium processor-compatible PC

• One parallel printer port or one USB port to connect your target board
to your PC

• DVD drive

• Windows 2000 or Windows XP

You may need additional hardware, such as signal sources and generators,
oscilloscopes or signal display systems, and assorted cables to test and
evaluate your application on your hardware.

Supported Hardware for Targets
Target for TI C2000 supports the following boards:

• DSP Starter Kits (DSK) from Spectrum Digital, Inc.

- TMS320F2812 eZdsp DSK — The F2812eZdsp DSP Starter Kit

- TMS320F2808 eZdsp DSK — The F2808eZdsp DSP Starter Kit

The above DSKs help developers evaluate digital signal processing
applications for the Texas Instruments DSP chips. You can create, test, and
deploy your processing software and algorithms on the target processor

1-4

Setting Up and Configuring

without the difficulties inherent in starting with the digital signal processor
itself and building the support hardware to test the application on the
processor. Instead, the development board provides the input hardware,
output hardware, timing circuitry, memory, and power for the digital signal
processor. Texas Instruments provides the software tools, such as the C
compiler, linker, assembler, and integrated development environment, for
PC users to develop, download, and test their algorithms and applications
on the processor.

Refer to the documentation provided with your hardware for information
on setting up and testing your target board.

Note To generate code, and download the code to your target board, you do
not need to change any jumpers from their factory defaults on the F2812
target board.

However, if you want to run your code from flash memory on the F2808 or
F2812, you do need to change settings on the board. For more information
on this, see “Creating Stand-Alone Applications by Saving Code into Flash
Memory”.

Note In factory default condition, the F2812 target board is set to
operate in microcontroller mode. Target for TI C2000 does not support
microprocessor mode.

• Custom boards based on any of the following Texas Instruments C2000
Digital Signal Controllers:

- TMS320F2801

- TMS320F2802

- TMS320F2806

- TMS320F2808

- TMS320F2809

- TMS320C2810

1-5

1 Getting Started

- TMS320F2810

- TMS320C2811

- TMS320F2811

- TMS320R2811

- TMS320C2812

- TMS320F2812

- F28015

- F28016

- F28044

Running Code from Flash Memory
Running code from flash memory is supported on both the F2808 and F2812
eZdsp DSKs. Although you can generate and download code to the F2808 or
F2812 eZdsp DSK with the board in factory default condition, you need to
change hardware settings on the board before you can run code from flash
memory. For more information, refer to“Creating Stand-Alone Applications
by Saving Code into Flash Memory”

Software Requirements

MathWorks Software
For information about other MathWorks software required to use Target for
TI C2000, refer to the MathWorks Web site — http://www.mathworks.com.
Check the Products area for Target for TI C2000.

For information about the software required to use Link for Code Composer
Studio Development Tools, refer to the Products area of the MathWorks Web
site — http://www.mathworks.com.

Texas Instruments Software
In addition to the required software from The MathWorks™, Target for TI
C2000 requires that you install the Texas Instruments development tools and

1-6

http://www.mathworks.com
http://www.mathworks.com

Setting Up and Configuring

software listed in the following table. Installing Code Composer Studio IDE
for the C2000 series installs the software shown.

Required TI Software for Targeting Your TI C2000 Hardware

Installed
Product Additional Information

Assembler Creates object code (.obj) for C2000 boards from
assembly code.

Compiler Compiles C code from the blocks in Simulink models
into object code (.obj). As a by-product of the
compilation process, you get assembly code (.asm) as
well.

Linker Combines various input files, such as object files and
libraries.

Code Composer
Studio

Texas Instruments integrated development
environment (IDE) that provides code debugging and
development tools.

TI C2000
miscellaneous
utilities

Various tools for developing applications for the C2000
digital signal processor family.

Code Composer
Setup Utility

Program you use to configure your CCS installation by
selecting your target boards or simulator.

Flash Plug-In Plug-in you use in downloading generated code to flash
memory. While this plug-in is not strictly required, it
is very useful when working with flash memory. It is
available through the CCS Web Update.

Verifying the Configuration
To determine whether Target for TI C2000 is installed on your system, enter
this command at the MATLAB prompt:

c2000lib

1-7

1 Getting Started

MATLAB displays the C2000 block library containing the following libraries
and blocks that comprise the C2000 library:

• RTDX Instrumentation

• C2000 Target Preferences

• Host-side CAN Blocks

• Host-side SCI Blocks

• C281x DSP Chip Support

• C280x DSP Chip Support

• C28x IQMath Library

• C28x DMC Library

If you do not see the listed libraries, or MATLAB does not recognize the
command, you need to install Target for TI C2000. Without the software,
you cannot use Simulink and Real-Time Workshop to develop applications
targeted to the TI boards.

Note For information about system requirements, refer to the system
requirements page, available in the Products area at the MathWorks Web
site (http://www.mathworks.com).

To verify that Code Composer Studio (CCS) is installed on your machine,
enter this command at the MATLAB prompt:

ccsboardinfo

With CCS installed and configured, MATLAB returns information about
the boards that CCS recognizes on your machine, in a form similar to the
following listing:

Board Board Proc Processor Processor
Num Name Num Name Type
--- ---------------------------------- ---
1 F2812 Simulator 0 CPU TMS320C28xx
0 F2812 PP Emulator 0 CPU_1 TMS320C28xx

1-8

http://www.mathworks.com

Setting Up and Configuring

If MATLAB does not return information about any boards, revisit your CCS
installation and setup in your CCS documentation.

As a final test, launch CCS to ensure that it starts up successfully. For Target
for TI C2000 to operate with CCS, the CCS IDE must be able to run on its own.

Note For any model to work in the targeting environment, you must select
the discrete-time solver in the Solver pane of the Simulink Configuration
Parameters dialog box. Targeting does not work with continuous-time solvers.

To select the discrete-time solver, from the main menu in your model window,
select Simulation > Configuration Parameters. Then in the Solver pane,
set the Solver option to discrete (no continuous states).

1-9

1 Getting Started

Target for TI C2000 and Code Composer Studio

In this section...

“Using Code Composer Studio with Target for TI C2000” on page 1-10

“Default Project Configuration” on page 1-10

Using Code Composer Studio with Target for TI C2000
Texas Instruments (TI) facilitates development of software for TI DSPs by
offering Code Composer Studio (CCS) Integrated Development Environment
(IDE). Used in combination with Target for TI C2000 and Real-Time
Workshop, CCS provides an integrated environment that, once installed,
requires no coding.

Executing code generated from Real-Time Workshop on a particular target
requires that Real-Time Workshop generate target code that is tailored to the
specific hardware target. Target-specific code includes I/O device drivers and
interrupt service routines (ISRs). Generated source code must be compiled
and linked using CCS so that it can be loaded and executed on a TI DSP.
To help you to build an executable, Target for TI C2000 uses Link for Code
Composer Studio to start the code building process within CCS. After you
download your executable to your target and run it, the code runs wholly on
the target. You can access the running process only from the CCS debugging
tools or across a link using Link for Code Composer Studio Development Tools.

Default Project Configuration
CCS offers two standard project configurations, Release and Debug. Project
configurations define sets of project build options. When you specify the build
options at the project level, the options apply to all files in your project. For
more information about the build options, refer to your TI documentation. The
models you build with Target for TI C2000 use a custom configuration that
provides a third combination of build and optimization settings — customMW.

Default Build Options in the custom_MW Configuration
The default settings for custom_MW are the same as the Release project
configuration in CCS, except for the compiler options.

1-10

Target for TI C2000 and Code Composer Studio

Your CCS documentation provides complete details on the compiler build
options. You can change the individual settings or the build configuration
within CCS.

1-11

1 Getting Started

Data Type Support
TI C2000 DSPs support 16-bit data types and do not have native 8-bit data
types. Simulink and Target for TI C2000 support many data types, including
8-bit data types.

If you select int8 or uint8 in your model, your simulation runs with 8-bit
data, but in the generated code, that data will be represented as 16-bit. This
may cause instances where data overflow and wraparound occurs in the
simulation, but not in the generated code.

For example, to make the overflow behavior of the simulation and generated
code match for a Simulink Add block in your model, select Saturate on
integer overflow in that block.

1-12

Scheduling and Timing

Scheduling and Timing

In this section...

“Overview” on page 1-13

“Timer-Based Interrupt Processing” on page 1-13

“Asynchronous Interrupt Processing” on page 1-14

Overview
Normally the code generated by Target for TI C2000 runs out of the context
of a timer interrupt. Model blocks run in a periodical fashion clocked by the
periodical interrupt whose period is tied to the base sample time of the model.

This execution scheduling model, however, is not flexible enough for many
systems, especially control and communication systems, which must respond
to external events in real time. Such systems require the ability to handle
various hardware interrupts in an asynchronous fashion.

For C280x and C281x-based boards, Target for TI C2000 lets you model
systems that include asynchronous hardware interrupt processing in addition
to the tasks that are left to be handled in the context of the timer interrupt.

Timer-Based Interrupt Processing
For code that runs in the context of the timer interrupt, each iteration of the
model solver is run after an interrupt has been posted and serviced by an
interrupt service routine (ISR). The code generated for the C280x or C281x
uses CPU_timer0.

The timer is configured so that the model’s base rate sample time corresponds
to the interrupt rate. The timer period and prescaler are calculated and set
up to ensure the desired rate as follows:

BaseRateSampleTime
TimerPeriod

TimerClockSpeed
=

1-13

1 Getting Started

The minimum achievable base rate sample time depends on the model
complexity. The maximum value depends on the maximum timer period value
(232-1 for the F2812 and F2808), and the CPU clock speed. The CPU clock
speed for the F2808 it is 100 MHz, and for the F2812 it is 150 MHz.

If all the blocks in the model inherit their sample time value, and no sample
time is explicitly defined, Simulink assigns a default of 0.2 s.

High-Speed Peripheral Clock
The Event Managers and their general-purpose timers, which drive PWM
waveform generation use the high-speed peripheral clock (HISCLK). By
default, this clock is always selected in Target for TI C2000. This clock is
derived from the system clock (SYSCLKOUT):

HISCLK = [SYSCLKOUT / (high-speed peripheral prescaler)]

The high-speed peripheral prescaler is determined by the HSPCLK bits set in
SysCtrl. The default value of HSPCLK is 1, which corresponds to a high-speed
peripheral prescaler value of 2.

For example, on the F2812, the HISCLK rate becomes

HISCLK = 150 MHz / 2 = 75 MHz

Asynchronous Interrupt Processing
Simulink and Real-Time Workshop facilitate the modeling and generation
of code for asynchronous event handling, including servicing of
hardware-generated interrupts, by using the following special blocks:

• Hardware Interrupt block

This block enables selected hardware interrupts, generates the
corresponding interrupt service routines (ISRs), and connects them to the
corresponding interrupt service vector table entries. When you connect
the output of the Hardware Interrupt block to the control input of a
triggered subsystem (for example, a function-call subsystem), the generated
subsystem code is called from the ISRs.

1-14

Scheduling and Timing

Target for TI C2000 provides a Hardware Interrupt block for each of the
supported processor families: C280x Hardware Interrupt and C281x
Hardware Interrupt.

• Rate Transition blocks

These blocks support data transfers between blocks running with different
priorities. The built-in Simulink Rate Transition blocks can be used for
this purpose.

• Software Interrupt block

This block polls the input port for the input value, and when the input
value is greater than a specified value, the block posts the interrupt to a
Hardware Interrupt block in the model.

The following diagram illustrates a use case where a Hardware Interrupt
block triggers two tasks, connected to other blocks that run periodically in the
context of the synchronous scheduler.

In the preceding figure, the Hardware Interrupt block is set to react on two
interrupts. Since only one Hardware Interrupt block is allowed in a model
and the output of this block is a vector of length two, you must connect the
Hardware Interrupt block to a Demux block to trigger the two function-called
subsystems. The function-called subsystems contain the blocks that are
executed asynchronously in the context of the hardware interrupt.

1-15

1 Getting Started

The following example shows how to build and configure a model to react on
an eCAN message using a hardware interrupt and an asynchronous scheduler:

1 Place the eCAN Receive block in a function-called subsystem, as shown in
the following figure.

2 On the eCAN Receive block dialog, check the box labeled Post interrupt
when message is received, as shown in the following figure.

1-16

Scheduling and Timing

3 Set the Sample Time of the eCAN Receive block to -1 since the block will
be triggered by the ISR, as shown in the preceding figure.

4 Add the C281x Hardware Interrupt block to your model, as shown in the
following figure.

1-17

1 Getting Started

5 The eCAN interrupt on C281x chips is on CPU line 9 and PIE line 5
for module 0. These parameters can be found in the C281x Hardware
Interrupt block, C281x Peripheral Interrupt Vector Values figure. Set the
hardware interrupt parameters CPU interrupt number(s): to 9, and PIE
interrupt number(s): to 5 as shown in the following figure.

6 Connect the output of the Hardware Interrupt block to the function-call
subsystem containing the eCAN block.

At execution time, when a new eCAN message is received, the eCAN interrupt
is triggered, and the code you placed in the function-called subsystem
is executed. In this example, the eCAN Receive block is placed in the
function-called subsystem, which means that the message is read and is
passed to the rest of the code.

For more information, see the section on Asynchronous Support in the
Real-Time Workshop documentation.

1-18

Overview of Creating Models for Targeting

Overview of Creating Models for Targeting

In this section...

“Accessing the Target for TI C2000 Block Library” on page 1-19

“Online Help” on page 1-20

“Blocks with Restrictions” on page 1-20

“S-Function Builder Blocks” on page 1-22

“Setting Simulation Configuration Parameters” on page 1-22

“Building Your Model” on page 1-23

Accessing the Target for TI C2000 Block Library
After you have installed the supported development board, start MATLAB. At
the MATLAB command prompt, type

c2000lib

This opens the c2000lib Simulink blockset that includes libraries containing
blocks predefined for C2000 input and output devices. As needed, add the
blocks to your model. See “Using the c2000lib Blockset” on page 1-25 for an
example of how to use this library.

Create your real-time model for your application the same way you create any
other Simulink model — by using standard blocks and C-MEX S-functions.
Select blocks to build your model from the following sources:

• Appropriate Target Preferences library block, to set preferences for your
target and application

• From the appropriate libraries in the c2000lib block library, to handle
input and output functions for your target hardware

• From Real-Time Workshop

• From Simulink Fixed Point

• Discrete time blocks from Simulink

1-19

1 Getting Started

• From any other blockset that meets your needs and operates in the discrete
time domain

Online Help
To get general help for using Target for TI C2000, use the help feature in
MATLAB. At the command prompt, type

help tic2000

to list the functions and block libraries included in Target for TI C2000. Or
select Help > Full Product Family Help from the menu bar in the MATLAB
desktop. When you see the Contents in Help, select Target for TI C2000.

Blocks with Restrictions
There are many blocks in different blocksets that communicate with your
MATLAB workspace. Some blocks may not work on the target as they do on
your desktop, and for that reason, you should avoid them altogether. Other
blocks may have restrictions in their settings, which, when followed, ensure
smooth communications. All the blocks that require this special consideration
are listed in the following sections.

Blocks to Avoid Using in Your Models
The blocks listed in the table below generate code, but they do not work on
the target as they do on your desktop—in general, they slow your signal
processing application without adding instrumentation value. For this reason,
The MathWorks recommends that you avoid using certain blocks, such as the
Scope block and some source and sink blocks, in SIMULINK models that
you use for TI C2000 DSP targets.

1-20

Overview of Creating Models for Targeting

Library Category Block Name

Scope

To File

Sinks

To Workspace

From File

Simulink

Sources

From Workspace

Signal Operations Triggered Signal From
Workspace

Signal To Workspace

Spectrum Scope

Triggered to Workspace

To Wave Device

Signal Processing Sinks

To Wave File

Signal From Workspace

From Wave Device

Signal Processing
Blockset

Signal Processing
Sources

From Wave File

Blocks That Require Specific Settings
Any block listed in the following table can be used with all your models.
However, such a block requires specific settings, as indicated under
“Restriction.”

1-21

1 Getting Started

Library Category Block
Name

Restriction

Signal
Processing
Blockset

Signal
Processing
Sources

Random
Source
Block

For this block, the only Output data
type supported by the TI C2000 is
Single. Be sure to set this parameter
correctly in the Block Parameters
dialog box. See the following figure.

S-Function Builder Blocks
Simulink S-Function Builder can be used to create and add new blocks to your
model. When you generate code for your model, related source code files are
added to your Code Composer Studio project.

Setting Simulation Configuration Parameters
When you drag a Target Preferences block into your model, you are given the
option to set basic simulation parameters automatically.

To refine the automatic settings, or set the simulation parameters manually,
open your model and select Simulation > Configuration Parameters.

If you are setting your simulation parameters manually, you must make at
least the following two settings:

• You must specify discrete time by selecting Fixed-step and discrete (no
continuous states) in the Solver pane of the Configuration Parameters
dialog box.

1-22

Overview of Creating Models for Targeting

• You must also specify the appropriate version of the system target file and
template makefile in the Real-Time Workshop pane. For Target for TI
C2000, specify one of the following system target files, or click Browse
and select from the list of targets.

ccslink_grt.tlc
ccslink_ert.tlc

The associated template filename is automatically filled in.

System Target Types and Memory Management
There are two system target types that apply to Target for TI C2000. These
correspond to the two system target files mentioned above.

A Generic Real-Time (GRT) target (such as ccslink_grt.tlc) is the target
configuration that generates model code for a real-time system as if the
resulting code was going to be executed on your workstation.

An Embedded Real-Time (ERT) target (such as ccslink_ert.tlc) is
the target configuration that generates model code for execution on an
independent embedded real-time system. This option requires Real-Time
Workshop Embedded Coder.

The ERT target for Target for TI C2000 offers memory management features
that give you a way manage the performance of your code while working with
limited memory resources. For more information on this, see the chapter on
Memory Sections in the Real-Time Workshop Embedded Coder User’s Guide.

Building Your Model
With this configuration, you can generate a real-time executable and download
it to your TI development board by clicking generate_code on the Real-Time
Workshop pane. Real-Time Workshop automatically generates C code and
inserts the I/O device drivers as specified by the hardware blocks in your
block diagram, if any. These device drivers are inserted in the generated C
code as inlined S-functions. For information about inlining S-functions, refer
to your target language compiler documentation. For a complete discussion of
S-functions, refer to your documentation about writing S-functions.

1-23

1 Getting Started

During the same build operation, block parameter dialog box entries are
combined into a project file for CCS for your TI C2000 board. If you selected
the Build and execute build action in the configuration settings, your
makefile invokes the TI cross-compiler to build an executable file that
is automatically downloaded via the parallel port to your target. After
downloading the executable file to the target, the build process runs the file
on the board’s DSP.

Note After using the run-time Build option to generate and build code for
your application, you must perform the following reset sequence before you
can run that code on your board. If you want to rerun your application
manually once it has been generated, you must also use this procedure.

F2812 eZdsp and F2808 eZdsp Reset Sequence

1 Reset the board CPU.

2 Load your code onto the target.

3 Run your code on the target.

1-24

Using the c2000lib Blockset

Using the c2000lib Blockset

In this section...

“Introduction” on page 1-25

“Hardware Setup” on page 1-25

“Starting the c2000lib Library” on page 1-26

“Setting Up the Model” on page 1-27

“Adding Blocks to the Model” on page 1-31

“Generating Code from the Model” on page 1-33

Introduction
This section uses an example to demonstrate how to create a Simulink model
that uses Target for TI C2000 blocks to target your board. The example
creates a model that performs PWM duty cycle control via pulse width change.
It uses the C2812 ADC block to sample an analog voltage and the C2812
PWM block to generate a pulse waveform. The analog voltage controls the
duty cycle of the PWM and you can observe the duty cycle change on the
oscilloscope. This model is also provided in the Demos library. Note that the
model in the Demos library also includes a model simulation.

Hardware Setup
The following hardware is needed for this example:

• Spectrum Digital eZdsp F2812

• Function generator

• Oscilloscope and probes

To connect the hardware:

1 Connect the function generator output to the ADC input ADCINA0 on
the eZdsp F2812.

2 Connect the output of PWM1 on the eZdsp F2812 to the analog input of
the oscilloscope.

1-25

1 Getting Started

3 Connect VREFLO to AGND on the eZdsp F2812. See the section
on the Analog Interface in Chapter 2 of the eZdsp™ F2812
Technical Reference, available from the Spectrum Digital Web site at
http://c2000.spectrumdigital.com/ezf2812/

Starting the c2000lib Library
At the MATLAB prompt, type

c2000lib

to open the c2000lib library blockset, which contains libraries of blocks
designed for targeting your board.

The libraries are in three groups, plus Info and Demos blocks.

1-26

http://c2000.spectrumdigital.com/ezf2812/

Using the c2000lib Blockset

General

• C2800 RTDX Instrumentation (rtdxBlocks) — Blocks for adding RTDX
communications channels to Simulink models. See the tutorial in Link for
Code Composer Studio Development Tools documentation for an example
of using these blocks.

• C2000 Target Preferences (c2000tgtpreflib) — Blocks to specify target
preferences and options. You do not connect this block to any other block in
your model.

• Host-side CAN Blocks (c2000canlib) — Blocks to configure CAN message
blocks and Vector CAN driver blocks

• Host-side SCI Blocks (c2000canlib) — Blocks to configure host-side serial
communications interface to send and receive data from serial port

Chip Support

• C281x DSP Chip Support (c281xdspchiplib) — Blocks to configure the
codec on the F2812 eZdsp DSK or on C281x-based custom boards

• C280x DSP Chip Support (c280xdspchiplib) — Blocks to configure the
codec on the F2808 eZdsp DSK or on C280x-based custom boards

Optimized Libraries

• C28x IQmath Library (tiiqmathlib) — Fixed-point math blocks for use
with C28x targets

• C28x DMC Library (c28xdmclib) — Fixed-point math blocks for digital
motor control with C28x DSPs

Setting Up the Model
Preliminary tasks for setting up a new model include adding a Target
Preferences block, setting or verifying Target Preferences, and setting the
simulation parameters.

1 In the Library: c2000lib window, select File > New > Model to create a
new Simulink model.

1-27

1 Getting Started

2 In the Library: c2000lib window, double-click the C2000 Target Preferences
library block.

3 From the Target Preferences Library window, drag the F2812 eZdsp block
into your new model.

4 Click Yes to allow automatic setup. The following settings are
made, referenced in the table below by their locations in the
Simulation > Configuration Parameters dialog box:

Pane Field Setting

Solver Stop time 10

Solver Type Fixed-step

Data
Import/Export

Save to workspace - Time tout

Data
Import/Export

Save to workspace -
Output

yout

Hardware
Implementation

Device type C2000

Real-Time
Workshop

Target selection - System
target file

ccslink_grt.tlc
or
ccslink_ert.tlc

Note Generated code does not honor Simulink stop time from the
simulation. Stop time is interpreted as inf. To implement a stop in
generated code, you must put a Stop Simulation block in your model.

1-28

Using the c2000lib Blockset

Note One Target Preferences block must be in each target model at the
top level. It does not connect to any other blocks, but stands alone to set
the target preferences for the model.

5 From your model’s main menu, select Simulation > Configuration
Parameters to verify and set the simulation parameters for this model.
Parameters you set in this dialog box belong to the model you are building.
They are saved with the model and stored in the model file. Refer to your
Simulink documentation for information on the Configuration Parameters
dialog box.

6 Use the Real-Time Workshop pane to set options for the real-time
model. Refer to your “Real-Time Workshop” documentation for detailed
information on the Real-Time Workshop pane options.

1-29

1 Getting Started

• System target file. Clicking Browse opens the System target file
browser where you select ccslink_grt.tlc or ccslink_ert.tlc.
When you select your target configuration, Real-Time Workshop
chooses the appropriate system target file, template makefile, and make
command. You can also enter the target configuration filename, and
Real-Time Workshop will fill in the Template makefile and Make
command selections.

7 Set the configuration parameters by typing Ctrl-E and adjust these
parameters. For descriptions of these fields, see the Target Preferences
reference page and “Setting Simulation Configuration Parameters” on page
1-22 in the section titled “Overview of Creating Models for Targeting” on
page 1-19.

1-30

Using the c2000lib Blockset

Adding Blocks to the Model

1 Double-click the C281x DSP Chip Support Library to open it.

2 Drag the C281x ADC block into your model. Double-click the ADC block
in the model and set Sample time to 64/80000. Use the default values

1-31

1 Getting Started

for all other fields. Refer to the C281x ADC reference page for information
on these fields.

3 Drag the C281x PWM block into your model. Double-click the PWM block
in the model and set the following parameters. Refer to the C281x PWM
reference page for information on these fields.

Pane Field Parameter

Module A

Waveform
period source

Specify via dialog

Waveform
period units

Clock cycles

Waveform
period

64000

Timer

Waveform type Asymmetric

Enable
PWM1/PWM2

SelectedOutputs

Duty cycle
source

Input port

PWM1 control
logic

Active highLogic

PWM2 control
logic

Active low

Use
deadband for
PWM1/PWM2

Selected

Deadband
prescaler

16

Deadband

Deadband
period

12

ADC Control ADC start event Period interrupt

1-32

Using the c2000lib Blockset

4 Enter Simulink at the MATLAB command line to open the Simulink
Library browser. Drag a Gain block from the Math Operations library into
your model. Double-click the Gain block in the model and set the following
parameters in the Function Block Parameters dialog box. Click OK.

Pane Field Parameter

Gain 30

Multiplication Element-wise(K.*u)

Main

Sample time -1

Output data type
mode

uint(16)Signal Attributes

Round integer
calculations toward

Floor

Parameter
Attributes

Parameter data type
mode

Inherit from input

5 Connect the ADC block to the Gain block and the Gain block to the PWM
block as shown:

Generating Code from the Model
This section summarizes how to generate code from your real-time model. For
details about generating code from models in Real-Time Workshop, refer to
the “Real-Time Workshop” documentation.

You start the automatic code generation process from the Simulink model
window by clicking Generate code in the Real-Time Workshop pane of the
Configuration Parameters dialog. Other ways of starting the code generation
process are by clicking the Incremental Build button on the toolbar of
your model, or by pressing the keyboard shortcut, Ctrl+B, while your model
is open and in focus.

1-33

1 Getting Started

Note In CCS, you see your project with the files in place in the directory tree.

1-34

2

Configuring Timing
Parameters for CAN Blocks

Blocks Where the Bit Rate Cannot
Be Set Directly (p. 2-2)

Lists the specific blocks whose
timing parameters are set with the
described process

Setting Timing Parameters (p. 2-3) Describes how to set block timing
parameters to obtain the required
bit rate

Parameter Tuning and Signal
Logging (p. 2-9)

How use Simulink external mode
or a third party calibration tool for
signal logging and parameter tuning.

2 Configuring Timing Parameters for CAN Blocks

Blocks Where the Bit Rate Cannot Be Set Directly
There are four specific CAN blocks in the C2000 control where the bit rate
cannot be set directly and require the setting of timing parameters. These
blocks are:

C281x eCAN Receive
C281x eCAN Transmit
C280x eCAN Receive
C280x eCAN Transmit

2-2

Setting Timing Parameters

Setting Timing Parameters

In this section...

“Accessing the Timing Parameters” on page 2-3

“Equations for Bit Rate Calculation” on page 2-5

“CAN Bit Timing Examples” on page 2-7

Accessing the Timing Parameters
In “Blocks Where the Bit Rate Cannot Be Set Directly” you must use the
following parameters: TSEG1, TSEG2, and BaudRatePrescaler (BRP) to
set the required bit rate. These parameters are configured from the Target
Preference Setup dialog for your specific model, in the Peripherals
tab. To open the Target Preference Setup dialog, double click the target
preferences block in your model. For example, for the C281x blocks, this
dialog box is shown in the following figure:

2-3

2 Configuring Timing Parameters for CAN Blocks

For the C280x blocks, there are two separate eCAN modules that can be set
independently, as shown by the Target Preferences Setup dialog box:

2-4

Setting Timing Parameters

The following sections describe the series of steps and rules that govern the
process of setting these timing parameters.

Equations for Bit Rate Calculation
The following steps guide you through the process of configuring the required
timing parameters.

1 Review the known entities:

2-5

2 Configuring Timing Parameters for CAN Blocks

Bit Rate

This is the rate you want to set for your CAN.

SYSCLKOUT

This is the CAN module system clock frequency.

2 Estimate the value of the BaudRatePrescaler (BRP) and substitute this
value, along with the known values of Bitrate and SYSCLKOUT, into the
equation below as follows:

Bitrate SYSCLKOUT BRP BitTime= /(*)

Solve this equation for BitTime to obtain a value:

BitTime SYSCLKOUT BRP Bitrate= /(*)

3 Estimate values of TSEG1 and TSEG2 that satisfy the following equation:

BitTime TSEG TSEG= + +1 2 1
Remember that BitTime is now a known quantity, calculated in the
previous step.

4 Validate these estimated values of BRP, TSEG1, and TSEG2 against the
following rules:

TSEG1 >= TSEG2
IPT (Information Processing Time) = 3/BRP
IPT <= TSEG1 <= 16 TQ
IPT <= TSEG2 <= 8 TQ
1 TQ <= SJW <= min (4 TQ, TSEG2)

where IPT is Information Processing Time, TQ is Time Quanta, and SJW
is Synchronization Jump Width, also set in the Target Preference Setup
dialog box. .

5 Iterate steps two through four until the values selected for TSEG1, TSEG2,
and BRP meet all of the criteria.

Another way to look at the eCAN bit timing parameters is shown in the
following illustration.

2-6

Setting Timing Parameters

CAN Bit Timing Examples
Assume that SYSCLKOUT = 150 MHz, and a bit rate of 1 Mbits/s is required.

1 Try to set the BRP to 10. Then substitute the values of bit rate, BRP, and
SYSCLKOUT into the following equation, solving for BitTime:

BitTime SYSCLKOUT BRP Bitrate
BitTime TQ

=
= =

/(*)
/(*)150 10 1 15

2 Try to set the values of TSEG1 and TSEG2 to 8TQ and 6TQ respectively.
Substitute the values of BitTime from the previous equation, and the
chosen values for TSEG1 and TSEG2 into the following equation:

BitTime TSEG TSEG
TQ TQ TQ

= + +
= + +

1 2 1
15 8 6 1

3 Finally, check the selected values against the rules:

IPT = 3/BRP = 3/10 = .3
IPT <= TSEG1 <= 16 TQ True! .3<=8TQ<=16TQ
IPT <= TSEG2 <= 8TQ True! .3 <= 6TQ <= 8TQ

2-7

2 Configuring Timing Parameters for CAN Blocks

1TQ <= SJW <= min(4TQ, TSEG2) which means that SJW can be set to
either 2, 3, or 4

4 Because all chosen values satisfy the criteria, no further iteration is
necessary.

The following table provides common timing parameter settings for 3 typical
values of Bit Rate and SYSCLKOUT = 150MHz. This clock frequency is the
maximum for the C281x blocks.

Bit Rate TSEG1 TSEG2 Bit Time BRP SJW

.5 Mbit/s 8 6 15 20 2

1 Mbit/s 8 6 15 10 2

2 Mbit/s 8 6 15 5 2

The following table provides common timing parameter settings for 3 typical
values of Bit Rate and SYSCLKOUT = 100MHz. This clock frequency is the
maximum for the C280x blocks.

Bit Rate TSEG1 TSEG2 Bit Time BRP SJW

.5 6 3 10 20 2

1 5 4 10 10 2

2 6 3 10 5 2

2-8

Parameter Tuning and Signal Logging

Parameter Tuning and Signal Logging

In this section...

“Overview” on page 2-9

“Using External Mode” on page 2-9

“Using a Third Party Calibration Tool” on page 2-18

Overview
Target for TI C2000 supports parameter tuning and signal logging either using
Simulink external mode or with a third party calibration tool. In both cases
the model must include a special block, the CAN Calibration Protocol block.

Using External Mode
Simulink external mode enables you to log signals and tune parameters
without requiring a calibration tool. This section describes the steps for
converting a model to use external mode.

External mode is supported using the CAN Calibration Protocol block and
ASAP2 interface. The CAN Calibration Protocol block is used to communicate
with the target, downloading parameter updates and uploading signal
information. The ASAP2 interface is used to get information about where in
the target memory a parameter or signal lives.

Note You must configure the host-side CAN application channel. See
“Configuring the Host Vector CAN Application Channel ” on page 2-11.

To prepare your model for external mode, follow these steps:

1 Add a CCP driver block.

2 Add a Switch External Mode Configuration Block (for ease of use; you can
also make changes manually).

2-9

2 Configuring Timing Parameters for CAN Blocks

3 Identify signals you want to tune, and associate them with
Simulink.Parameter objects with ExportedGlobal storage class. It is
important to set the data type and value of the Simulink.Parameter object.
See “Using Supported Objects and Data Types” on page 2-11.

4 Identify signals you want to log, and associate them with canlib.Signal
objects. It is important to set the data type of the canlib.Signal. See
“Using Supported Objects and Data Types” on page 2-11.

For information about visualizing logged signal data, see “Viewing and
Storing Signal Data” on page 2-13.

5 Load the the Simulink.Parameter and canlib.Signal data objects into
the base workspace.

6 Configure the model for building by double-clicking the Switch External
Mode Configuration block. In the dialog box, select Building an
executable, and click OK.

7 Build the model, and download the executable to the target

8 After downloading the executable to the target, you can switch the model to
external mode by double-clicking the Switch External Mode Configuration
Block. In the dialog box that appears, select External Mode, and click OK.

9 You can now connect to the target using external mode by clicking the
Connect button.

10 If you have set up tunable parameters, you can now tune them. See
“Tuning Parameters” on page 2-12.

If you do not want to use the Switch External Mode Configuration block, you
can configure for building and then external mode manually. For instructions,
see “Manual Configuration For External Mode” on page 2-16.

See the following topics for more information:

• “Configuring the Host Vector CAN Application Channel ” on page 2-11

• “Using Supported Objects and Data Types” on page 2-11

• “Tuning Parameters” on page 2-12

2-10

Parameter Tuning and Signal Logging

• “Viewing and Storing Signal Data” on page 2-13

• “Manual Configuration For External Mode” on page 2-16

• “Limitations” on page 2-17

Configuring the Host Vector CAN Application Channel
External mode expects that the host-side CAN connection is using the
'MATLAB 1' application channel. To configure the application channel used
by the Vector CAN drivers, enter the following at the MATLAB command line:

TargetsComms_VectorApplicationChannel.configureApplicationChannels

The Vector CAN Configuration tool appears. Use this tool to configure your
host-side CAN channel settings.

If you try to connect using an application channel other than 'MATLAB 1',
then you see the following warning in the command window:

Warning:
It was not possible to connect to the target using CCP.
An error occurred when issuing the CONNECT command.

Using Supported Objects and Data Types
Supported objects:

• Simulink.Parameter for parameter tuning

• canlib.Signal for signal logging

Supported data types:

• uint8, int8

• uint16, int16

• uint32, int32

• single

2-11

2 Configuring Timing Parameters for CAN Blocks

You need to define data objects for the signals and parameters of interest for
ASAP 2 file generation. For ease of use, create an m-file to define the data
objects, so that you only have to set up the objects once.

To set up tuneable parameters and signal logging:

1 Associate the parameters to be tuned with Simulink.Parameter objects
with ExportedGlobal storage class. It is important to set the data type and
value of the Simulink.Parameter object. See the following m-code for an
example of how to create such a Simulink.Parameter object for tuning:

stepSize = Simulink.Parameter;
stepSize.DataType = 'uint8';
stepSize.RTWInfo.StorageClass = 'ExportedGlobal';
stepSize.Value = 1;

2 Associate the signals to be logged with canlib.Signal objects. It is important
to set the data type of the canlib.Signal. The following m-code example
shows how to declare such a canlib.Signal object for logging:

counter = canlib.Signal;
counter.DataType = 'uint8';

3 Associate the data objects you have defined in the m-file with parameters
or signals in the model. For the previous m-code examples, you could set
the Constant value in a Source block to stepSize, and set a Signal name
to counter in the Signal Properties dialog box. Remember that stepSize
and counter are data objects defined in the m-code.

Tuning Parameters
To tune a parameter, follow these steps:

1 Set dataobject.value in the workspace while the model is running in
external mode. For example, to tune the parameter stepSize (that is, to
change its value) from 1 to 2, enter the following at the command line:

stepSize.value = 2

2-12

Parameter Tuning and Signal Logging

You see output similar to the following:

stepSize =

Simulink.Parameter (handle)
RTWInfo: [1x1 Simulink.ParamRTWInfo]

Description: ''
DataType: 'uint8'

Min: -Inf
Max: Inf

DocUnits: ''
Value: 2

Complexity: 'real'
Dimensions: [1 1]

2 Return to your model, and update the model (press Ctrl+D) to apply the
changed parameter.

Viewing and Storing Signal Data
To view the logged signals attach a supported scope type to the signal (see
“Limitations” on page 2-17 for supported scope types).

Select which signals you want to log by using the External Signal &
Triggering dialog box. Access the External Mode Control Panel from the Tools
menu, and click the Signal & Triggering button. By default, all displays
appear as selected to be logged, as shown in the following example. Edit
these settings if you do not want to log all displays. Individual displays can
be selected manually.

2-13

2 Configuring Timing Parameters for CAN Blocks

Storing signal data for further analysis. It is possible to store the logged
data for further analysis in MATLAB.

1 To use the Data Archiving feature of external mode, click Data Archiving
in the External Mode Control Panel. The External Data Archiving dialog
box appears.

2-14

Parameter Tuning and Signal Logging

a Select the check box Enable archiving

b Edit the Directory and Filename and any other desired settings.

c Close the dialog box.

2 Open the Scope parameters, and select the check box Save data to
workspace.

2-15

2 Configuring Timing Parameters for CAN Blocks

3 You may want to edit the Variable name in the edit box. The data that is
displayed on the scope at the end of the external mode session is available
in the workspace with this variable name.

The data that was previously displayed in the scope is stored in .mat files
as previously setup using Data Archiving.

For example, at the end of an external mode session, the following variable
and files could be available in the workspace and current directory:

• A variable ScopeData5 with the data currently displayed on the scope:

ScopeData5

ScopeData5 =

time: [56x1 double]
signals: [1x1 struct]

blockName: 'mpc555rt_ccp/Scope1'

• In the current directory, .mat files for the three previous Durations of
scope data:

ExternalMode_0.mat
ExternalMode_2.mat
ExternalMode_1.mat

Manual Configuration For External Mode
As an alternative to using the Switch External Mode Configuration block, you
can configure models manually for build and execution with external mode.

To configure a model to be built for external mode:

1 Select Inline parameters (under Optimization in the Configuration
Parameters dialog box). The Inline parameters option is required for
ASAP2 generation.

2 Select Normal simulation mode (in either the Simulation menu, or the
drop-down list in the toolbar).

2-16

Parameter Tuning and Signal Logging

3 Select ASAP2 as the Interface (under Real-Time Workshop, Interface, in
the Data Exchange pane, in the Configuration Parameters dialog box).

After you build the model, you can configure it for external mode execution:

1 Make sure Inline parameters are selected (under Optimization in the
Configuration Parameters dialog box). The Inline parameters option is
required for external mode.

2 Select External simulation mode (in either the Simulation menu, or the
drop-down list in the toolbar).

3 Select External mode as the Interface (under Real-Time Workshop,
Interface, in the Data Exchange pane, in the Configuration Parameters
dialog box).

Limitations
Multiple signal sinks (e.g. scopes) are not supported.

Only the following kinds of scopes are supported with External Mode Logging:

• Simulink Scope block

• Simulink Display block

• Viewer type: scope — To use this option, right-click a signal in the model,
and select Create & Connect Viewer > Simulink > Scope. The other
scope types listed there are not supported (e.g., floating scope).

Before connecting to external mode, you also need to right-click the signal,
and select Signal Properties. In the dialog box, select the Test point
check box, and click OK.

GRT is supported but only for parameter tuning.

It is not possible to log signals with very fast sample times (e.g., 0.0001)
without losing data.

Subsystem builds are not supported for external mode, only top-level builds
are supported.

2-17

2 Configuring Timing Parameters for CAN Blocks

Logging and tuning of nonscalars is not supported. It is possible to log
nonscalar signals by breaking the signal down into its scalar components. For
an example of how to do this signal deconstruction, see the CCP demo models,
which use a Demux and Signal Conversion block with contiguous copy.

Logging and tuning of complex numbers is not supported. It is possible to
work with complex numbers by breaking the complex number down into its
real and imaginary components. This breakdown can be performed using
the following blocks in the Simulink Math Operations library: Complex to
Real-Imag, Real-Imag to Complex, Magnitude-Angle to Complex, Complex
to Magnitude-Angle.

Using a Third Party Calibration Tool
Target forTI C2000 allows an ASAP2 data definition file to be generated
during the code generation process. This file can be used by a third party tool
to access data from the real-time application while it is executing.

ASAP2 is a data definition standard by the Association for Standardization
of Automation and Measuring Systems (ASAM). ASAP2 is a standard
description for data measurement, calibration, and diagnostic systems. Target
for TI C2000 lets you export an ASAP2 file containing information about your
model during the code generation process. See also .

Before you begin generating ASAP2 files with Target for TI C2000, you
should read the “Generating ASAP2 Files” section of the Real-Time Workshop
documentation. That section describes how to define the signal and parameter
information required by the ASAP2 file generation process.

Select the ASAP2 option before the build process as follows:

1 Select Simulation > Configuration Parameters.

The Configuration Parameters dialog box appears.

2 Select Interface (under Real-Time Workshop) in the tree.

3 Select the ASAP2 option from the Interface drop-down menu, in the Data
exchange frame.

4 Click Apply.

2-18

Parameter Tuning and Signal Logging

The build process creates an ASAM-compliant ASAP2 data definition file for
the generated C code.

• The standard Real-Time Workshop ASAP2 file generation does not
include the memory address attributes in the generated file. Instead,
it leaves a placeholder that must be replaced with the actual address by
postprocessing the generated file.

• The map file options in the template project need to be set up a certain way
for this procedure to work. If you have created your own template projects,
and you do not have the correct settings, you see the following instructions:

Warning: It was not possible to do ASAP2 processing on your
.map file.This is because your IDE project template is not
configured to generate a .map file in the correct format.
To generate a .map file in the correct format you need to
setup the following options in your IDE project template:
Generate section map should be checked on
Generate register map should be checked off
Generate symbol table should be checked on
Format list file into pages should be checked off
Generate summary should be checked off
Page width should be equal to 132 characters
Symbol colums should be 1
You can change these options via Project -> Project Options
-> Linker/Locator -> Map File -> Map File Format.

Target for TI C2000 performs this postprocessing for you. To do this, it first
extracts the memory address information from the map file generated during
the link process. Secondly, it replaces the placeholders in the ASAP2 file with
the actual memory addresses. This postprocessing is performed automatically
and requires no additional input from you.

2-19

2 Configuring Timing Parameters for CAN Blocks

2-20

3

Configuring Acquisition
Window Width for ADC
Blocks

What Is an Acquisition Window?
(p. 3-2)

Explains the concept of the
acquisition window and how it
affects data validity

Configuring ADC Parameters for
Acquisition Window Width (p. 3-5)

Describes how to set ADC
parameters to obtain the proper
acquisition window width

3 Configuring Acquisition Window Width for ADC Blocks

What Is an Acquisition Window?
ADC blocks take a signal from an analog source and measure it with a digital
device. The digital device does not measure in a continuous process, but in a
series of discrete measurements, close enough together to approximate the
source signal with the required accuracy, as shown in the following figure:

�������	
���� �
�
��������������

The digital measurement itself is not an instantaneous process, but is a
measurement window, where the signal is acquired and measured, as shown
below:

	�����
	
����

���������� ����������
����
�
�
��
�
����

Ideally, as soon as the measurement window is opened, the actual signal
coming in would be measured perfectly. In reality the signal does not reach its
full magnitude immediately. The measurement process can be modeled by a

3-2

What Is an Acquisition Window?

circuit similar to the one shown in the following figure for the ADC found on
the F2812 eZdsp

where the measurement circuit is characterized by a certain capacitance. In
the preceding figure, when the switch is closed, the measurement begins. In
this circuit, which is characterized by its capacitance, the signal received
is not in a form of a step function as shown by the ideal measurement, but
a ramp up to the true signal magnitude. The following figure shows what
happens to the signal when the sampler switch is closed and the signal is
received to be measured:

�������	
����
����
�
�
��
�
����
�
���

Because the signal acquisition is not instantaneous, it is very important to
set a wide enough acquisition window to allow the signal to ramp up to full
strength before the measurement is taken. If the window is too narrow,
the measurement is taken before the signal has reached its full magnitude,
resulting in erroneous data. If the window is too wide, the source signal itself
may change, and the sampling may be too infrequent to reflect the actual
value, also resulting in erroneous data. You must calculate the necessary

3-3

3 Configuring Acquisition Window Width for ADC Blocks

width of the acquisition window based on the circuit characteristics of
resistance and capacitance of your specific circuit. Then, using the ADC
parameters described in the following section, you can configure the necessary
acquisition window width.

3-4

Configuring ADC Parameters for Acquisition Window Width

Configuring ADC Parameters for Acquisition Window
Width

In this section...

“Accessing the ADC Parameters” on page 3-5

“Examples” on page 3-7

Accessing the ADC Parameters
The ADC parameters can be set from the Peripherals tab of the Custom
C280x Board configuration settings, or the configuration settings for the
Custom C281x Board, or the F2808 eZdsp. These parameters are:

• ACQ_PS — Acquisition Prescaler — can be set to a value from 0 to 15,
however, the actual value is incremented by 1 to result in a range from
1 to 16.

• ADCLKPS — AD Clock Prescaler — can be set to a value from 0 to 15,
however, the actual value is incremented by 1 to result in a range from
1 to 16.

• CPS — Clock Prescaler — can be set to a value from 0 to 1, however, the
actual value is incremented by 1 to result in a range from 1 to 2.

3-5

3 Configuring Acquisition Window Width for ADC Blocks

These three prescalers serve to reduce the speed of the clock and to set the
acquisition window width. The following diagram shows how these prescalers
are used:

3-6

Configuring ADC Parameters for Acquisition Window Width

������	
������
 !�"
������#
�
$
���%

&'	����
 �
����(���
(��
(�����
����#% ������	��

�����������

����
�������#
)�������*�"*��
)�������)��������

��	

��	

��	��
)��������������
��������#
)�������*�"*��
)�������)������+

��,-�	

��������
��
��
�����
��������#
�
����

��,-�	��
����
�
�
��
�����������

��
�����
�������*
������
�
�#���
��
���(�
��
�����
����

	��(��
&���
����#
(����

In the preceding diagram, the high speed peripheral clock frequency is
received and then divided by the ADCLKPS. The reduced clock frequency
is then further divided by CPS. The resulting frequency is the ADCCLK
signal. The value of ACQ_PS then determines how many ADCCLK ticks
comprise one S/H (sample and hold) period, or in other words, the length of
the acquisition window.

Examples
The following examples show how you can use ADC parameters to configure
the acquisition window width:

Example 1:

If the HISPCLK = 30 MHz, and ADCLKPS=1 (which is a value of 2), the
result is 15MHz.

If CPS= 1 (which is a value of 2), then ADCCLK = 7.5MHz.

If ACQ_PS = 0 (which is a value of 1), then the sample/hold period is 1
ADCCLK tick, or .1333 nanoseconds.

3-7

3 Configuring Acquisition Window Width for ADC Blocks

Example 2:

If the HISPCLK = 30 MHz, and ADCLKPS=1 (which is a value of 2), the
result is 15MHz.

If CPS= 1 (which is a value of 2), then ADCCLK = 7.5MHz.

If ACQ_PS = 15 (which is a value of 16), then the sample/hold period is 16
ADCCLK ticks, or 2.1333 nanoseconds.

Note HISPCLK is set automatically for the user, and it is not possible to
change the rate.

3-8

4

Creating Stand-Alone
Applications by Saving
Code into Flash Memory

The Need for Stand-Alone
Applications (p. 4-2)

Explains the need and use for storing
code in Flash memory

Generating Code for Flash Memory
(p. 4-3)

Lists necessary steps to place
generated code into on-chip Flash
memory

Running Code from Flash Memory
(p. 4-4)

Describes the required steps to run
code from on-chip Flash memory

4 Creating Stand-Alone Applications by Saving Code into Flash Memory

The Need for Stand-Alone Applications
By default, the code generated through the Code Composer Studio (CCS)
is stored in RAM on the applicable chip and is discarded when the chip is
unplugged. However, there is often a need to save the generated code directly
on the DSP chip nonvolatile memory to reuse it for a different application
or environment. Flash memory allows this process to take place. Saving
the code in Flash, directly on the chip, allows the chip to be unplugged and
reused at a different time.

4-2

Generating Code for Flash Memory

Generating Code for Flash Memory
To store generated code in the internal Flash memory of the C28xx DSPs
specific parameters need to be set. You also need a Flash Programmer (the TI
Flash programmer is installed by default with CCS). The following process
guides you through the necessary steps:

1 Drag the F2812 or F2808 Stand alone using Flash Memory Target
Preferences block into the model.

2 Programming the on-chip Flash for TI C28xx DSPs requires a Flash
Programmer. The two most commonly used options are the TI Flash
Programmer, which is installed by default with CCS, or the Spectrum
Digital™ SDFlash. Refer to the specific vendor’s documentation for more
information, and then download and install a Flash Programmer of your
choice.

3 Build and generate code in CCS. Then, launch the Flash Programmer to
erase, program, and verify the Flash. Your chip now contains the code
in its Flash memory.

4-3

4 Creating Stand-Alone Applications by Saving Code into Flash Memory

Running Code from Flash Memory
Now that the code is saved in the C28xx DSP chip nonvolatile memory, you
must set an indicator for the chip before you can run this code. This indicator
is set by the Bootloader Modes of the particular chip. For example, on F2812
eZdsp, you need to adjust the jumper setting for JP7. On F2808 eZdsp, you
need to adjust the switches 1 and 3 on bank SW1. For precise instructions,
refer to the specific DSP Boot ROM Reference Guide found on the TI Web page
and the Spectrum Digital ™ Reference Guides for the eZdsp chips.

4-4

http://www.ti.com/
http://c2000.spectrumdigital.com/ezf2812/

5

Using the IQmath Library

About the IQmath Library (p. 5-2) Introduces the IQmath Library

Fixed-Point Numbers (p. 5-4) Representation of fixed-point
numbers in the IQmath Library

Building Models (p. 5-9) Issues to consider when you build
models with the IQmath Library

5 Using the IQmath Library

About the IQmath Library

In this section...

“Introduction” on page 5-2

“Common Characteristics” on page 5-3

Introduction
The IQmath Library provides blocks that perform processor-optimized,
fixed-point mathematical operations. The blocks in the C28x IQmath Library
correspond to functions in the Texas Instruments C28x IQmath Library
assembly-code library, which target the TI C28x family of digital signal
processors.

Note The implementation of this library for the TI C28x processor produces
the same simulation and code-generation output as the TI version of this
library, but it does not use a global Q value, as does the TI version. The Q
format is dynamically adjusted based on the Q format of the input data.

The IQmath Library blocks generally input and output fixed-point data types
and use numbers in Q format. The C28x IQmath Library block reference
pages discuss the data types accepted and produced by each block in the
library. For more information on fixed-point numbers and Q format, see

• “Fixed-Point Numbers” on page 5-4. In addition, see the Simulink Fixed
Point documentation, which includes more information on fixed-point data
types and scaling and precision issues.

• “Q Format Notation” on page 5-5

You can use these blocks with some core Simulink blocks and Simulink
Fixed Point blocks to run simulations in Simulink models before generating
code. Once you develop your model, you can invoke Real-Time Workshop to
generate equivalent code that is optimized to run on a TI C28x DSP. During
code generation, a call is made to the IQmath Library for each IQmath
Library block in your model to create target-optimized code. To learn more

5-2

About the IQmath Library

about creating models that include both IQmath Library blocks and blocks
from other blocksets, refer to “Building Models” on page 5-9.

Common Characteristics
The following characteristics are common to all IQmath Library blocks:

• Sample times are inherited from driving blocks.

• Blocks are single rate.

• Parameters are not tunable.

• All blocks support discrete sample times.

To learn more about characteristics particular to each block in the library, see
“C28x IQmath (tiiqmathlib)” on page 6-11 for links to the individual block
reference pages.

5-3

5 Using the IQmath Library

Fixed-Point Numbers

In this section...

“Notation” on page 5-4

“Signed Fixed-Point Numbers” on page 5-5

“Q Format Notation” on page 5-5

Notation
In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1s and 0s). How hardware components
or software functions interpret this sequence of 1s and 0s is defined by the
data type.

Binary numbers are used to represent either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number
(either signed or unsigned) is shown below:

where

• is the ith binary digit.

• is the word size in bits.

• is the location of the most significant (highest) bit (MSB).

• is the location of the least significant (lowest) bit (LSB).

• The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of 4.

5-4

Fixed-Point Numbers

Signed Fixed-Point Numbers
Signed binary fixed-point numbers are typically represented in one of three
ways:

• Sign/magnitude

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is used by TI digital signal processors.

Negation using signed two’s complement representation consists of a bit
inversion (translation to one’s complement representation) followed by the
binary addition of a 1. For example, the two’s complement of 000101 is
111011, as follows:

000101 ->111010 (bit inversion) ->111011 (binary addition of a 1 to the
LSB)

Q Format Notation
The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When it performs basic arithmetic such
as addition or subtraction, hardware uses the same logic circuits regardless of
the value of the scale factor. In essence, the logic circuits have no knowledge of
a binary point. They perform signed or unsigned integer arithmetic — as if the
binary point is to the right of b0. Therefore, you determine the binary point.

In the IQmath Library, the position of the binary point in the signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n

where

• Q designates that the number is in Q format notation — the Texas
Instruments representation for signed fixed-point numbers.

5-5

5 Using the IQmath Library

• m is the number of bits used to designate the two’s complement integer
portion of the number.

• n is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.

In Q format, the most significant bit is always designated as the sign bit.
Representing a signed fixed-point data type in Q format always requires
m+n+1 bits to account for the sign.

Note The range and resolution varies for different Q formats. For specific
details, see Section 3.2 in the Texas Instruments C28x Foundation Software,
IQmath Library Module User’s Guide.

When converting from Q format to floating-point format, the accuracy of the
conversion depends on the values and formats of the numbers. For example,
for single-precision floating-point numbers that use 24 bits, the resolution of
the corresponding 32-bit number cannot be achieved. The 24-bit number
approximates its value by truncating the lower end. For example:

32-bit integer 11110000 11001100 10101010 00001111
Single-precision float +1.1110000 11001100 10101010 x 231
Corresponding value 11110000 11001100 10101010 00000000

Example — Q.15
For example, a signed 16-bit number with n = 15 bits to the right of the binary
point is expressed as

Q0.15

in this notation. This is (1 sign bit) + (m = 0 integer bits) + (n = 15 fractional
bits) = 16 bits total in the data type. In Q format notation, the m = 0 is often
implied, as in

Q.15

In Simulink Fixed Point, this data type is expressed as

sfrac16

5-6

Fixed-Point Numbers

or

sfix16_En15

In Filter Design Toolbox, this data type is expressed as

[16 15]

Example — Q1.30
Multiplying two Q0.15 numbers yields a product that is a signed 32-bit data
type with n = 30 bits to the right of the binary point. One bit is the designated
sign bit, thereby forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore, this number is expressed as

Q1.30

In Simulink Fixed Point, this data type is expressed as

sfix32_En30

In Filter Design Toolbox, this data type is expressed as

[32 30]

Example — Q-2.17
Consider a signed 16-bit number with a scaling of 2(-17). This requires n = 17
bits to the right of the binary point, meaning that the most significant bit
is a sign-extended bit.

Sign extension fills additional bits with the value of the MSB. For example,
consider a 4-bit two’s complement number 1011. When this number is
extended to 7 bits with sign extension, the number becomes 1111101 and the
value of the number remains the same.

One bit is the designated sign bit, forcing m to be -2:

m+n+1 = -2+17+1 = 16 bits total

5-7

5 Using the IQmath Library

Therefore, this number is expressed as

Q-2.17

In Simulink Fixed Point, this data type is expressed as

sfix16_En17

In Filter Design Toolbox, this data type is expressed as

[16 17]

Example — Q17.-2
Consider a signed 16-bit number with a scaling of 2^(2) or 4. This means that
the binary point is implied to be 2 bits to the right of the 16 bits, or that there
are n = -2 bits to the right of the binary point. One bit must be the sign bit,
thereby forcing m to be 17:

m+n+1 = 17+(-2)+1 = 16

Therefore, this number is expressed as

Q17.-2

In Simulink Fixed Point, this data type is expressed as

sfix16_E2

In Filter Design Toolbox, this data type is expressed as

[16 -2]

5-8

Building Models

Building Models

In this section...

“Overview” on page 5-9

“Converting Data Types” on page 5-9

“Using Sources and Sinks” on page 5-10

“Choosing Blocks to Optimize Code” on page 5-10

Overview
You can use IQmath Library blocks in models along with certain core
Simulink, Simulink Fixed Point, and other blockset blocks. This section
discusses issues you should consider when building a model with blocks from
these different libraries.

Converting Data Types
As always, it is vital to make sure that any blocks you connect in a model
have compatible input and output data types. In most cases, IQmath Library
blocks handle only a limited number of specific data types. You can refer to
any block reference page in the alphabetical block reference for a discussion of
the data types that the block accepts and produces.

When you connect IQmath Library blocks and Simulink Fixed Point blocks,
you often need to set the data type and scaling in the block parameters of the
Simulink Fixed Point block to match the data type of the IQmath Library
block. Many Simulink Fixed Point blocks allow you to set their data
type and scaling through inheritance from the driving block, or through
backpropagation from the next block. This can be a good way to set the data
type of a Simulink Fixed Point block to match a connected IQmath Library
block.

Some Signal Processing Blockset blocks and core Simulink blocks also accept
fixed-point data types. Make the appropriate settings in these blocks’
parameters when you connect them to an IQmath Library block.

5-9

5 Using the IQmath Library

Using Sources and Sinks
The IQmath Library does not include source or sink blocks. Use source or
sink blocks from the core Simulink library or Simulink Fixed Point in your
models with IQmath Library blocks.

Choosing Blocks to Optimize Code
In some cases, blocks that perform similar functions appear in more than
one blockset. For example, both the IQmath Library and Simulink Fixed
Point have a Multiply block. When you are building a model to run on C2000
DSP, choosing the block from the IQmath Library always yields better
optimized code. You can use a similar block from another library if it gives
you functionality that the IQmath Library block does not support, but you
will generate code that is less optimized.

5-10

6

Blocks — By Category

C2000 Target Preferences
(c2000tgtpreflib) (p. 6-2)

Target preference blocks for C2000
boards

Host-Side CAN Blocks (c2000canlib)
(p. 6-3)

Host-Side CAN blocks

Host-Side SCI Blocks (c2000scilib)
(p. 6-4)

Host-Side SCI blocks

C2000 RTDX Instrumentation
(rtdxBlocks) (p. 6-5)

RTDX blocks for C2000 boards

C280x DSP Chip Support
(c280xdspchiplib) (p. 6-6)

Blocks that support C280x boards

C281x DSP Chip Support
(c281xdspchiplib) (p. 6-8)

Blocks that support C281x boards

C28x Digital Motor Control
(c28xdmclib) (p. 6-10)

Blocks that represent the
functionality of the TI C28x
DMC Library

C28x IQmath (tiiqmathlib) (p. 6-11) Blocks that represent the
functionality of the TI IQmath
Library

6 Blocks — By Category

C2000 Target Preferences (c2000tgtpreflib)

Custom Board Target preferences for custom C28xx
board

F2808 eZdsp F2808 eZdsp DSK target preferences

F2808 eZdsp Stand alone code using
Flash Memory

F2812 eZdsp F2812 eZdsp DSK target preferences

F2812 eZdsp Stand alone code using
Flash Memory

6-2

Host-Side CAN Blocks (c2000canlib)

Host-Side CAN Blocks (c2000canlib)
See the CAN Blockset Reference for information on these blocks. See
“Parameter Tuning and Signal Logging” on page 2-9 for information about
using external mode with CCP.

6-3

6 Blocks — By Category

Host-Side SCI Blocks (c2000scilib)

SCI Receive Configure host-side serial
communications interface to
receive data from serial port

SCI Setup Configure COM ports for host-side
SCI Transmit and Receive blocks

SCI Transmit Configure host-side serial
communications interface to
transmit data to serial port

6-4

C2000 RTDX Instrumentation (rtdxBlocks)

C2000 RTDX Instrumentation (rtdxBlocks)
From RTDX Add RTDX input channel

To RTDX Add RTDX output channel

6-5

6 Blocks — By Category

C280x DSP Chip Support (c280xdspchiplib)

C280x ADC Analog-to-digital converter (ADC)

C280x eCAN Receive Enhanced Control Area Network
receive mailbox

C280x eCAN Transmit Enhanced Control Area Network
transmit mailbox

C280x eCAP Receive and log capture input pin
transitions or configure auxiliary
pulse width modulator

C280x ePWM Configure C280x Event Manager
to generate Enhanced Pulse Width
Modulator (ePWM) waveforms

C280x eQEP Quadrature encoder pulse circuit

C280x GPIO Digital Input Configure general purpose input
pins

C280x GPIO Digital Output Configure general purpose output
pins

C280x Hardware Interrupt Interrupt Service Routine to handle
hardware interrupt onC280x
processor

C280x SCI Receive Receive data on target via serial
communications interface (SCI) from
host

C280x SCI Transmit Transmit data from target via serial
communications interface (SCI) to
host

C280x SPI Receive Receive data via serial peripheral
interface (SPI) on target

C280x SPI Transmit Transmit data via serial peripheral
interface (SPI) to host

C280x SW Int Trigger Generate software triggered
nonmaskable interrupt

6-6

C280x DSP Chip Support (c280xdspchiplib)

From Memory Retrieve data from target memory

Idle Task Free-running task that executes
downstream subsystem

To Memory Write data to target memory

6-7

6 Blocks — By Category

C281x DSP Chip Support (c281xdspchiplib)

C281x ADC Analog-to-digital converter (ADC)

C281x CAP Receive and log capture input pin
transitions

C281x eCAN Receive Enhanced Control Area Network
receive mailbox

C281x eCAN Transmit Enhanced Control Area Network
transmit mailbox

C281x GPIO Digital Input General-purpose I/O pins for digital
input

C281x GPIO Digital Output General-purpose I/O pins for digital
output

C281x Hardware Interrupt Interrupt Service Routine to handle
hardware interrupt on C281x
processor

C281x PWM Pulse width modulators (PWMs)

C281x QEP Quadrature encoder pulse circuit

C281x SCI Receive Receive data on target via serial
communications interface (SCI) from
host

C281x SCI Transmit Transmit data from target via serial
communications interface (SCI) to
host

C281x SPI Receive Receive data via serial peripheral
interface on target

C281x SPI Transmit Transmit data via serial peripheral
interface (SPI) to host

C281x SW Int Trigger Generate software triggered
nonmaskable interrupt

C281x Timer Configure up to four general-purpose,
stand alone Event Manager timers

6-8

C281x DSP Chip Support (c281xdspchiplib)

From Memory Retrieve data from target memory

Idle Task Free-running task that executes
downstream subsystem

To Memory Write data to target memory

6-9

6 Blocks — By Category

C28x Digital Motor Control (c28xdmclib)

Clarke Transformation Convert balanced three-phase
quantities to balanced two-phase
quadrature quantities

Inverse Park Transformation Convert rotating reference frame
vectors to two-phase stationary
reference frame

Park Transformation Convert two-phase stationary
system vectors to rotating system
vectors

PID Controller Digital PID controller

Ramp Control Create ramp-up and ramp-down
function

Ramp Generator Generate ramp output

Space Vector Generator Duty ratios for stator reference
voltage

Speed Measurement Motor speed

6-10

C28x IQmath (tiiqmathlib)

C28x IQmath (tiiqmathlib)

Absolute IQN Absolute value

Arctangent IQN Four-quadrant arc tangent

Division IQN Divide IQ numbers

Float to IQN Convert floating-point number to IQ
number

Fractional part IQN Fractional part of IQ number

Fractional part IQN x int32 Fractional part of result of
multiplying IQ number and long
integer

Integer part IQN Integer part of IQ number

Integer part IQN x int32 Integer part of result of multiplying
IQ number and long integer

IQN to Float Convert IQ number to floating-point
number

IQN x int32 Multiply IQ number with long
integer

IQN x IQN Multiply IQ numbers with same Q
format

IQN1 to IQN2 Convert IQ number to different Q
format

IQN1 x IQN2 Multiply IQ numbers with different
Q formats

Magnitude IQN Magnitude of two orthogonal IQ
numbers

Saturate IQN Saturate IQ number

Square Root IQN Square root or inverse square root
of IQ number

Trig Fcn IQN Sine, cosine, or arc tangent of IQ
number

6-11

6 Blocks — By Category

6-12

7

Blocks — Alphabetical List

Absolute IQN

Purpose Absolute value

Library tiiqmathlib in Target for TI C2000

Description This block computes the absolute value of an IQ number input. The
output is also an IQ number.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Arctangent IQN, Division IQN, Float to IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-2

Arctangent IQN

Purpose Four-quadrant arc tangent

Library tiiqmathlib in Target for TI C2000

Description The Arctangent IQN block computes the four-quadrant arc tangent of
the IQ number inputs and produces IQ number output.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Function
Type of arc tangent to calculate:

• atan2 — Compute the four-quadrant arc tangent with output
in radians with values from -pi to +pi.

• atan2PU — Compute the four-quadrant arc tangent
per unit. If atan2(B,A) is greater than or equal to 0,
atan2PU(B,A) = atan2(B,A)/2*pi. Otherwise, atan2PU(B,A)

7-3

Arctangent IQN

= atan2(B,A)/2*pi+1. The output is in per-unit radians with
values from 0 to 2*pi radians.

Note The order of the inputs to the Arctangent IQN block correspond
to the Texas Instruments convention, with argument ’A’ at the top and
’B’ at bottom.

See Also Absolute IQN, Division IQN, Float to IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-4

C280x ADC

Purpose Analog-to-digital converter (ADC)

Library c280xdspchiplib in Target for TI C2000

Description The C280x ADC block configures the C280x ADC to perform
analog-to-digital conversion of signals connected to the selected ADC
input pins. The ADC block outputs digital values representing the
analog input signal and stores the converted values in the result
register of your digital signal processor. You use this block to capture
and digitize analog signals from external sources such as signal
generators, frequency generators, or audio devices.

Output

The output of the C280x ADC is a vector of uint16 values. The output
values are in the range 0 to 4095 because the C280x ADC is 12-bit
converter.

Modes

The C280x ADC block supports ADC operation in dual and cascaded
modes. In dual mode, either module A or module B can be used for the
ADC block, and two ADC blocks are allowed in the model. In cascaded
mode, both module A and module B are used for a single ADC block.

7-5

C280x ADC

Dialog
Box

ADC Control Pane

Module
Specifies which DSP module to use:

• A — Displays the ADC channels in module A (ADCINA0
through ADCINA7).

• B — Displays the ADC channels in module B (ADCINB0
through ADCINB7).

• A and B — Displays the ADC channels in both modules A
and B (ADCINA0 through ADCINA7 and ADCINB0 through
ADCINB7).

Conversion mode
Type of sampling to use for the signals:

• Sequential — Samples the selected channels sequentially.

7-6

C280x ADC

• Simultaneous — Samples the corresponding channels of
modules A and B at the same time.

Start of conversion
Type of signal that triggers conversions to begin:

• Software — Signal from software. Conversion values are
updated at each sample time.

• ePWMxA / ePWMxB / ePWMxA_ePWMxB — Start of conversion is
controlled by user-defined PWM events.

• XINT2_ADCSOC — Start of conversion is controlled by the
XINT2_ADCSOC external signal pin.

The choices available in Start of conversion depend on the
Module setting. The following table summarizes the available
choices. For each set of Start of conversion choices, the default
is given first.

Module
Setting

Start of Conversion Choices

A Software, ePWMxA, XINT2_ADCSOC

B ePWMxB, Software

A and B Software, ePWMxA, ePWMxB, ePWMxA_ePWMxB,
XINT2_ADCSOC

Sample time
Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at
which values are read from the result registers. See “Scheduling
and Timing” on page 1-13 for more information on timing. To
execute this block asynchronously, set Sample Time to -1, check
the Post interrupt at the end of conversion box, and refer to
“Asynchronous Interrupt Processing” on page 1-14 for a discussion
of block placement and other necessary settings.

7-7

C280x ADC

To set different sample times for different groups of ADC channels,
you must add separate C280x ADC blocks to your model and set
the desired sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, or uint32.

Post interrupt at the end of conversion
Select this check box to post an asynchronous interrupt at the
end of each conversion. Note that the interrupt is always posted
at the end of conversion. To execute this block asynchronously,
set Sample Time to -1, and refer to “Asynchronous Interrupt
Processing” on page 1-14 for a discussion of block placement and
other necessary settings.

Input Channels Pane

Number of conversions
Number of ADC channels to use for analog-to-digital conversions.

7-8

C280x ADC

Conversion no.
Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be
sampled multiple times during a single conversion sequence.
To oversample, specify the same channel for more than one
conversion. Converted samples are output as a single vector.

Use multiple output ports
If more than one ADC channel is used for conversion, you can use
separate ports for each output and show the output ports on the
block. If you use more than one channel and do not use multiple
output ports, the data is output in a single vector.

See Also C280x ePWM, C280x Hardware Interrupt, “Configuring Acquisition
Window Width for ADC Blocks”

7-9

CAN Calibration Protocol (C2000)

Purpose Implement CAN Calibration Protocol (CCP) standard

Library Target for TI C2000 Driver Library/ CAN Interface

Description The CAN Calibration Protocol (C2000) block provides an implementation
of a subset of the CAN Calibration Protocol (CCP) Version 2.1. CCP is
a protocol for communicating between the target processor and the
host machine over CAN. In particular, a calibration tool (see) running
on the host can communicate with the target, allowing remote signal
monitoring and parameter tuning.

This block processes a Command Receive Object (CRO) and outputs
the resulting Data Transmission Object (DTO) and Data Acquisition
(DAQ) messages.

For more information on CCP, refer to ASAM Standards: ASAM MCD:
MCD 1a on the Association for Standardization of Automation and
Measuring Systems (ASAM) Web site at http://www.asam.de.

Using the DAQ Output

Note The CCP Data Acquisition (DAQ) List mode of operation is only
supported with Real-Time Workshop Embedded Coder. If Embedded
Coder is not available then custom storage classes canlib.signal are
ignored during code generation: this means that the CCP DAQ Lists
mode of operation cannot be used.

You can use the CCP Polling mode of operation with or without
Real-Time Workshop Embedded Coder.

The DAQ output is the output for any CCP Data Acquisition (DAQ) lists
that have been set up. You can use the ASAP2 file generation feature of
the Real-Time (RT) target to

• Set up signals to be transmitted using CCP DAQ lists.

7-10

http://www.asam.de

CAN Calibration Protocol (C2000)

• Assign signals in your model to a CCP event channel automatically
(see).

Once these signals are set up, event channels then periodically fire
events that trigger the transmission of DAQ data to the host. When this
occurs, CAN messages with the appropriate CCP/DAQ data appear on
the DAQ output, along with an associated function call trigger.

The calibration tool (see) must use CCP commands to assign an
event channel and data to the available DAQ lists, and interpret the
synchronous response.

Using DAQ lists for signal monitoring has the following advantages
over the polling method:

• There is no need for the host to poll for the data. Network traffic is
halved.

• The data is transmitted at the correct update rate for the signal.
Therefore, there is no unnecessary network traffic generated.

• Data is guaranteed to be consistent. The transmission takes
place after the signals have been updated, so there is no risk of
interruptions while sampling the signal.

Note Target for TI C2000 does not currently support event channel
prescalers.

Dialog
Box CAN station address (16 bit integer)

The station address of the target. The station address is
interpreted as a uint16. It is used to distinguish between
different targets. By assigning unique station addresses to targets
sharing the same CAN bus, it is possible for a single host to
communicate with multiple targets.

7-11

CAN Calibration Protocol (C2000)

CAN module
Choose CAN module A or B.

CAN message identifier (CRO)
Specify the CAN message identifier for the Command Receive
Object (CRO) message you want to process.

CAN message type (CRO)
The incoming message type. Select either Standard(11-bit
identifier) or Extended(29-bit identifier).

CAN message identifier (DTO/DAQ)
The message identifier is the CAN message ID used for Data
Transmission Object (DTO) and Data Acquisition (DAQ) message
outputs.

CAN message type (DTO/DAQ)
The message type to be transmitted by the DTO and DAQ
outputs. Select either Standard(11-bit identifier) or
Extended(29-bit identifier).

Total number of Object Descriptor Tables (ODTs)
The default number of Object Descriptor Tables (ODTs) is 8.
These ODTs are shared equally between all available DAQ lists.
You can choose a value between 0 and 254, depending on how
many signals you wish to log simultaneously. You must make sure
you allocate at least 1 ODT per DAQ list, or your build will fail.
The calibration tool will give an error message if there are too few
ODTs for the number of signals you specify for monitoring. Be
aware that too many ODTs can make the sample time overrun.
If you choose more than the maximum number of ODTs (254),
the build will fail.

A single ODT uses 56 bytes of memory. Using all 254 ODTs would
require over 14 KB of memory, a large proportion of the available
memory on the target. To conserve memory on the target, the
default number is low, allowing DAQ list signal monitoring with
reduced memory overhead and processing power.

7-12

CAN Calibration Protocol (C2000)

As an example, if you have five different rates in a model, and you
are using three rates for DAQ, then this will create three DAQ
lists and you must make sure you have at least three ODTs. ODTs
are shared equally among DAQ lists and, therefore, you will end
up with one ODT per DAQ list. With less than three ODTs, you
get zero ODTs per DAQ list and the behavior is undefined.

Taking this example further, say you have three DAQ lists with
one ODT each, and start trying to monitor signals in a calibration
tool. If you try to assign too many signals to a particular DAQ list
(that is, signals requiring more space than seven bytes (one ODT)
in this case), then the calibration tool will report this as an error.

CRO sample time
The sample time for CRO messages.

Supported CCP Commands

The following CCP commands are supported by the CAN Calibration
Protocol (C2000) block:

• CONNECT

• DISCONNECT

• DNLOAD

• DNLOAD_6

• EXCHANGE_ID

• GET_CCP_VERSION

• GET_DAQ_SIZE

• GET_S_STATUS

• SET_DAQ_PTR

• SET_MTA

• SET_S_STATUS

• SHORT_UP

7-13

CAN Calibration Protocol (C2000)

• START_STOP

• START_STOP_ALL

• TEST

• UPLOAD

• WRITE_DAQ

Compatibility with Calibration Packages

The above commands support

• Synchronous signal monitoring via calibration packages that use
DAQ lists

• Asynchronous signal monitoring via calibration packages that poll
the target

• Asynchronous parameter tuning via CCP memory programming

This CCP implementation has been tested successfully with the
Vector-Informatik CANape calibration package running in both DAQ
list and polling mode, and with the Accurate Technologies, Inc., Vision,
calibration package running in DAQ list mode. (Note that Accurate
Technologies, Inc., Vision does not support the polling mechanism for
signal monitoring).

7-14

C280x eCAN Receive

Purpose Enhanced Control Area Network receive mailbox

Library c280xdspchiplib in Target for TI C2000

Description The C280x enhanced Control Area Network (eCAN) Receive block
generates source code for receiving eCAN messages through an
eCAN mailbox. The eCAN modules on the DSP chip provide serial
communication capability and have 32 mailboxes configurable for
receive or transmit. The C280x supports eCAN data frames in standard
or extended format.

The C28x eCAN Receive block has up to two and, optionally, three
output ports.

• The first output port is the function call port, and a function call
subsystem should be connected to this port. When a new message is
received, this subsystem is executed.

• The second output port is the message data port. The received data is
output in the form of a vector of elements of the selected data type.
The length of the vector is always 8 bytes. The message data port will
always output data. When the block is used in polling mode, if there
is no new message created between the consecutive executions of the
block, then the old message, or the existing message, is repeated.

• The third output port is optional and appears only if Output
message length is selected.

7-15

C280x eCAN Receive

Dialog
Box

Module
Determines which of the two eCAN modules is being configured
by this instance of the C280x eCAN Receive block. Options are
eCAN_A and eCAN_B.

Mailbox number
Unique number from 0 to 15 for standard or from 0 to 31 for
enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length
29 bits for extended frame size in decimal, binary, or hex. If in
binary or hex, use bin2dec(' ') or hex2dec(' '), respectively,
to convert the entry. The message identifier is associated with a

7-16

C280x eCAN Receive

receive mailbox. Only messages that match the mailbox message
identifier are accepted into it.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Sample time
Frequency with which the mailbox is polled to determine if a new
message has been received. A new message causes a function call
to be emitted from the mailbox. If you want to update the message
output only when a new message arrives, then the block needs to
be executed asynchronously. To execute this block asynchronously,
set Sample Time to -1, check the Post interrupt when
message is received box, and refer to “Asynchronous Interrupt
Processing” on page 1-14 for a discussion of block placement and
other necessary settings.

Note For information about setting the timing parameters of
the CAN module see “Configuring Timing Parameters for CAN
Blocks”.

Data type
Type of data in the data vector. The length of the vector for the
received message is at most 8 bytes. If the message is less than 8
bytes, the data buffer bytes are right-aligned in the output. Only
uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are allowed. The data are unpacked as follows
using the data buffer, which is 8 bytes.

For uint16 data,

Output[0] = data_buffer[1..0];
Output[1] = data_buffer[3..2];
Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

7-17

C280x eCAN Receive

For uint32 data,

Output[0] = data_buffer[3..0];
Output[1] = data_buffer[7..4];

For example, if the received message has two bytes,

data_buffer[0] = 0x21
data_buffer[1] = 0x43

the uint16 output would be:

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

Output message length
Select to output the message length in bytes to the third output
port. If not selected, the block has only two output ports.

Post interrupt when message is received
Select this check box to post an asynchronous interrupt when a
message is received.

References Detailed information on the eCAN module is in TMS320x281x, 280x
Enhanced Controller Area Network (eCAN) Reference Guide (Rev. D),
Literature Number SPRU074D, available at the Texas Instruments
Web site.

See Also C280x eCAN Transmit, C280x Hardware Interrupt

7-18

C280x eCAN Transmit

Purpose Enhanced Control Area Network transmit mailbox

Library c280xdspchiplib in Target for TI C2000

Description The C280x enhanced Control Area Network (eCAN) Transmit block
generates source code for transmitting eCAN messages through an
eCAN mailbox. The eCAN modules on the DSP chip provide serial
communication capability and have 32 mailboxes configurable for
receive or transmit. The C280x supports eCAN data frames in standard
or extended format.

Note Fixed-point inputs are not supported for this block.

Data Vectors

The length of the vector for each transmitted mailbox message is 8
bytes. Input data are always right-aligned in the message data buffer.
Only uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are accepted. The following examples show how the
different types of input data are aligned in the data buffer:

For input of type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

7-19

C280x eCAN Transmit

For input of type uint16,

inputdata [0] = 0x1234

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x00
data buffer[3] = 0x00
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16[2], which is a two-element vector,

inputdata [0] = 0x1234
inputdata [1] = 0x5678

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

7-20

C280x eCAN Transmit

Dialog
Box

Module
Determines which of the two eCAN modules is being configured
by this instance of the C280x eCAN Transmit block. Options are
eCAN_A and eCAN_B.

Mailbox number
Unique number from 0 to 15 for standard or from 0 to 31 for
enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length 29
bits for extended frame size in decimal, binary, or hex. If in binary
or hex, use bin2dec(' ') or hex2dec(' '), respectively, to
convert the entry. The message identifier is coded into a message
that is sent to the CAN bus.

7-21

C280x eCAN Transmit

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Enable blocking mode
If selected, the CAN block code waits indefinitely for a transmit
(XMT) acknowledge. If not selected, the CAN block code does not
wait for a transmit (XMT) acknowledge, which is useful when the
hardware might fail to acknowledge transmissions.

Post interrupt when message is transmitted
If selected, an asynchronous interrupt will be posted when data
is transmitted.

Note For information about setting the timing parameters of the CAN
module see “Configuring Timing Parameters for CAN Blocks”.

References Detailed information on the eCAN module is in TMS320x281x, 280x
Enhanced Controller Area Network (eCAN) Reference Guide (Rev. D),
Literature Number SPRU074D, available at the Texas Instruments
Web site.

See Also C280x eCAN Receive

7-22

C280x eCAP

Purpose Receive and log capture input pin transitions or configure auxiliary
pulse width modulator

Library c280xdspchiplib in Target for TI C2000

Description

Dialog
Box

The eCAP block dialog box provides configuration parameters on four
tabbed panes:

• General—Set the operating mode for the block (whether the block
performs eCAP or APWM processes, assign the pin associated, and
set the sample time

• eCAP—Configure eCAP functions such as prescalar value, capture
pin, and mode control

• APWM—Configure waveform and duty cycle values for the pulse
width modulation capability

• Interrupt—Specify when the block posts interrupts

You can add up to four C280x eCAP blocks to your model, one block for
each capture pin. For example, you can have one block configured for
eCAP mode with eCAP1 pin selected and three blocks configured for
APWM mode with assigned pins eCAP2, eCAP3, and eCAP4. Or four
blocks configured for eCAP mode with each block assigned a different
eCAP pin. You cannot assign the same eCAP pin to two eCAP blocks in
one model.

Block Input and Output Ports

The C280x eCAP block has optional input and output ports as shown in
the following table.

7-23

C280x eCAP

Port Description and When the
Port is Enabled

Input port SI Synchronization input for
input value from software.
Enabled when you select Enable
software forced counter
synchronizing input in either
operating mode.

Input port RA One-shot arming starts the
one-shot sequence. Enabled when
you set the mode control to One
shot.

Output port TS When you enable the reset
counter, this option resets the
capture event counter after
capturing the event time stamp.
Enabled when you select Enable
reset counter after capture
event1 time-stamp.

Output port CF This port reports the status of the
capture event. Enabled when you
select Enable capture event
status flag output.

Output port OF Enabled when you select Enable
overflow status flag output.

Note The outputs of this block can be vectorized.

7-24

C280x eCAP

General Pane

Operating mode
Select either eCAP or APWM from the list. Selecting eCAP puts
the block in capture mode for the capture units. The capture
units log pin transitions by logging the transitions in to a FIFO
buffer. In APWM mode, the block generates asymmetric pulse width
modulation (APWM) waveforms for driving downstream systems.

eCAPx pin
The capture unit includes the following features:

• Four capture input pins—eCAP1 though eCAP4—one pin for
each capture unit on the C281x processor.

7-25

C280x eCAP

• One maskable interrupt flag for each capture unit for a total
of four flags.

• Ability to specify the transition detection—rising edge, falling
edge, or both edges.

Counter phase offset value (0~4294967295)
The value you enter here provide the time base for event
captures, clocked by the system clock. A phase register is used to
synchronize with other counters via the software or hardware
forced sync (refer to Enable counter Sync-In mode). This is
particularly useful in APWM mode when you need a phase offset
between capture modules. Enter the phase offset as an integer
from 0 (no offset) to 42949667295 (232) counts.

Enable counter Sync-In mode
Select this to enable the TSCTR counter to load from the TSCTR
register when the block receives either the SYNC1 signal or a
software force event (refer to Enable software-forced counter
synchronizing input).

Enable software-forced counter synchronizing input
This option provides a convenient software method for
synchronizing one or more eCAP time bases.

Sync output selection
Select one of the list entries Pass through, CTR=PRD, or Disabled
to synchronize with other counters.

Sample time
Set the sample time for the block in seconds.

eCAP Pane

To enable the configuration parameters on this pane, select eCAP from
the Operating mode list on the General pane.

7-26

C280x eCAP

Event prescaler (integer from 0 to 31)
You can prescale an input capture signal, called a pulse train,
by a value that you set here. Enter an integer between 0 and
31. Entering a 0 bypasses the input prescaler, leaving the input
capture signal unchanged.

Select mode control
Provides continuous and one-shot mode control operations. The
default setting of continuous mode enables continuous time-stamp
captures using a circular buffer that captures events 1 through 4.

7-27

C280x eCAP

One shot mode disable continuous mode and enables the Enable
one-shot rearming control via input port option so you can
select it.

Enable one-shot rearming control via input port
Select this to arm the one-shot sequence:

1 Reset the Mod4 counter to zero.

2 Unfreeze the Mod4 counter.

3 Enable capture register loading.

Stop value after

Enable reset counter after capture event 1 time-stamp
Enables a reset after capture event 1. When you select this option,
the eCAP process resets the counters after receiving a capture
event 1 time-stamp.

Select capture event 1 polarity
This setting determines when the capture event triggers. Select
Rising edge or Falling edge from the list.

Time-Stamp counter data type
Select the data type to represent the counter. The list includes
integer and unsigned 8-, 16-, and 32-bit data types, double, single,
and Boolean. Select one on the list that meets your needs.

Enable capture event status flag output
Select to output the capture event status flag. The block outputs a
0 until the event capture. After the event the flag value is one.

Overflow capture event flag data type
Select the data type to represent the capture event flag. The
list includes integer and unsigned 8-, 16-, and 32-bit data types,
double, single, and Boolean. Select one on the list that meets your
needs.

7-28

C280x eCAP

Enable overflow status flag output
Select to output the status of the elements of the FIFO buffer.
After you select this, set the data type for the flag in Overflow
flag data type.

Overflow flag data type
Select the data type to represent the status flag. The list includes
integer and unsigned 8-, 16-, and 32-bit data types, double, single,
and Boolean. Select one on the list that meets your needs.

APWM Pane

To enable the configuration parameters on this pane, select APWM from
the Operating mode list on the General pane.

7-29

C280x eCAP

Waveform period units
Units in which to measure the waveform period. Options are
Clock cycles, which refer to the high-speed peripheral clock on
the F2812 chip (75 MHz), or Seconds. Note that changing these
units changes the Waveform period value and the Duty cycle
value and Duty cycle units selection.

Waveform period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value in Waveform period or
select Input port to use a value from the input port.

7-30

C280x eCAP

Waveform period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in the Waveform period units.

Note The term clock cycles refers to the high-speed peripheral
clock on the F2812 chip. This clock is 75 MHz by default because
the high-speed peripheral clock prescaler is set to 2 (150 MHz/2).

Duty cycle units
Units for the duty cycle. Select Clock cycles or Percentages
from the list. Changing these units changes the Duty cycle
value, the Waveform period value, and Waveform period
units selection.

Duty cycle source
Source from which the duty cycle for the specific PWM pair is
obtained. Select Specify via dialog to enter the value in Duty
cycle or select Input port to use a value from the input port.

Duty cycle
Ratio of the PWM waveform pulse duration to the PWM waveform
period expressed in Duty cycle units.

Output polarity select
Set the active level for the output. Choose Active High or Active
Low from the list. When you select Active High, the compare
value defines the high time. Selecting Active Low directs the
compare value to define the low time.

Interrupt Pane

In the following figure, you see the interrupt options when you put the
block in eCAP mode by selecting eCAP for Operating mode on the
General pane.

7-31

C280x eCAP

Post interrupt on capture event 1
Enables capture event 1 as in interrupt source.

Post interrupt on counter overflow
Enables counter overflow as an interrupt source.

The next figure presents the interrupt options when you put the block
in APWM mode by selecting APWM for Operating mode on the General
pane.

7-32

C280x eCAP

Post interrupt on counter equal period match

Post interrupt on counter equal compare match

7-33

C280x ePWM

Purpose Configure C280x Event Manager to generate Enhanced Pulse Width
Modulator (ePWM) waveforms

Library c280xdspchiplib in Target for TI C2000

Description A C280x system contains multiple ePWM modules, each having two
PWM outputs. The C280x ePWM block lets you configure up to six
ePWM modules.

7-34

C280x ePWM

Dialog
Box

General Pane

Module
Specifies which target ePWM module to use. Possible values are
ePWM1 through ePWM6.

7-35

C280x ePWM

Timer period units
Specifies the units in which the Waveform period is expressed.
Choose Seconds (the default) or Clock cycles. The period
register is a uint16, so when seconds are used for the Timer
period units (a double) a conversion must be done. For best
performance, It is recommended that you use clock cycles here as
there will be fewer calculations and less risk of round-off error. For
example, on the C2808 the PWM module is based on the system
clock, or SYSCLOCK/2 (100/2 MHz = 50 MHz) so the compare
value and the period register must be calculated using this timing.

Timer period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value in Waveform period or
select Input port to use a value from the input port.

Timer initial period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in Waveform period units.

Note The term clock cycles refers to the Time-base Clock on
the C280x chip. See the discussion of the TB clock prescaler
divider below for an explanation of how the Time-base Clock
speed is calculated.

Counting mode
Specifies the counting mode in which to operate. C280x PWMs
can operate in three distinct counting modes: Up, Down, and
Up-Down. The following illustration shows the waveforms that
correspond to these three modes:

7-36

C280x ePWM

Sync output selection
Specifies the source that generates the EPWMxSYNCO signal,
if any. The available choices are EPWMxSYNCI or SWFSYNC,
CTR=Zero, CTR=CMPB, and Disable (the default).

Enable S/W sync input port
This check box appears only when you choose EPWMxSYNCI or
SWFSYNC in Sync output selection. Check to enable the input
port.

Enable phase offset source
Determines whether the ePWM module will use a phase offset
and, if so, its source. Choices are Input port (the default),
Specify via dialog, and Disable.

Phase offset value
This field appears only when you select Specify via dialog in
Enable phase offset source. Enter the counter phase offset
value relative to the time-base that is supplying the sync-in signal.

TB clock prescaler divider
This value, together with the High Speed TB clock prescaler
divider value, determine the clock speed of the Time-Base
submodule, which provides all event timing for the ePWM. The
Time-base Clock’s speed (TBCLK) is the result of dividing the
system clock speed by the product of the High Speed TB clock
prescaler divider (HSPCLKDIV) and the TB clock prescaler
divider (CLKDIV) as in the following formula:

TBCLK = SYSCLKOUT/(HSPCLKDIV * CLKDIV)

7-37

C280x ePWM

Because the default values for both the High Speed TB clock
prescaler divider and the High Speed TB clock prescaler
divider are both 1, the default value of the Time-base Clock is
equal to the system clock speed of 100 MHz

Choices are 1, 2, 4, 8, 16, 32, 64, and 128.

High Speed TB clock prescaler divider
See the discussion of the TB clock prescaler divider above
for an explanation of this value’s role in setting the speed of the
Time-base Clock. Choices are 1, 2, 4, 6, 8, 10, 12, and 14.

ePWMA and ePWMB panes

The ePWMA output pane and ePWMB output pane include the
same settings, although the default value is different in some cases,
as noted below.

7-38

C280x ePWM

7-39

C280x ePWM

Enable ePWMxA
Enable ePWMxB

Select to enable the ePWMA and/or ePWMB output signals for the
module that is currently chosen in the General pane. By default,
both Enable ePWMxA and Enable ePWMxB are selected for
each of the six ePWM modules you can select in the General pane.

7-40

C280x ePWM

Use deadband for ePWMxA
Use deadband for ePWMxB

Enables a deadband area of no signal overlap between pairs of
ePWM output signals. In all cases, this check box is cleared by
default.

Duty cycle units
Specifies the units in which the Duty cycle value is expressed:
Percentages (the default) or Clock cycles.

Note Using percentages may cause some additional computation
time in generated code. This may or may not be noticeable in
your application.

Duty cycle source
Specifies the source from which the pulse width is to be obtained.
Choose Specify via dialog (the default) to enter a value in the
Duty cycle field, or Input port to use a value from the input
port.

Duty cycle
This field appears only when you choose Specify via dialog in
Duty cycle source. Enter a value that specifies the pulse width,
in the units specified in Duty cycle units.

Action when counter=ZERO
Action when counter=PRD
Action when counter=CMPA on CAU
Action when counter=CMPA on CAD
Action when counter=CMPB on CBU
Action when counter=CMPB on CBD

These settings, along with the other remaining settings in the
ePWMA output and ePWMB output panes, determine the
behavior of the Action Qualifier (AQ) submodule. Based on these
settings, the AQ module decides which events are converted into

7-41

C280x ePWM

various action types, thereby producing the required switched
waveforms of the ePWMxA and ePWMxB output signals.

For each of these four fields, the available choices are Do nothing,
Clear, Set, and Toggle.

The default values for these fields vary between the ePWMA
output and ePWMB output panes. The following table shows
the defaults for each of these panes:

Action when
counter=...

ePWMA output
pane

ePWMB output
pane

ZERO Clear Do nothing

PRD Do nothing Set

CMPA on CAU Set Do nothing

CMPA on CAD Do nothing Do nothing

CMPB on CBU Do nothing Clear

CMPB on CBD Do nothing Do nothing

For a detailed discussion of the AQ submodule, see the
TMS320x280x Enhanced Pulse Width Modulator (ePWM) Module
Reference Guide (SPRU791), available on the Texas Instruments
Web site.

Compare value reload condition
Enable continuous S/W force input port
Continuous S/W force logic
Reload condition for S/W force

These four settings determine how the AQ module handles the
S/W force event, an asynchronous event initiated by software
(CPU) via control register bits.

Compare value reload condition determines if and when the
Action-qualifier S/W Force Register is reloaded from a shadow

7-42

C280x ePWM

register. Choices are Load on CTR=Zero (the default), Load on
CTR=PRD, Load on either, and Freeze.

Enable continuous S/W force input port specifies the source
from which the control logic is obtained. This check box is cleared
by default. Select this check box to obtain the control logic from
the input port

Continuous S/W force logic specifies what type of S/W force
logic to use if the continuous S/W force input port is not enabled.
Choices are Forcing Disable (the default), Forcing Low, and
Forcing High.

Reload condition for S/W force — Choices are Zero (the
default), Period, Either period or zero, and Immediate.

Enable HRPWM
Select to enable High Resolution PWM settings. When the
effective resolution for conventionally generated PWM is
insufficient, you may want to consider High Resolution PWM
(HRPWM). The resolution of PWM is normally dependent upon
the PWM frequency and the underlying system clock frequency.
To address this limitation, HRPWM uses Micro Edge Positioner
(MEP) ™ technology to position edges more finely by dividing
each coarse system clock. The accuracy of the subdivision is on
the order of 150ps. The relationship between one system clock
and edge position in terms of MEP steps is shown in the following
figure:

7-43

C280x ePWM

HRPWM loading mode
Specify loading mode for HRPWM. This selects the time event
that loads the CMPAHR shadow value into the active register.

HRPWM control mode
Specify control mode for HRPWM. The MEP can be controlled
using duty cycle control from the CMPAHR register, or using
phase control from the TBPHSHR register. Rising edge or falling
edge should be controlled from the CMPAHR register. For control
of both edges, use the TBPHSHR register.

HRPWM edge control mode
Specify edge of the PWM that is controlled by the micro-edge
positioner™ (MEP) logic.

CMPAHR
Specify Compare A (High Resolution) register

Enable scale factor optimizer software™
Select to enable scale factor optimizer (SFO) software. The
TI-supplied MEP scale factor optimizer software functions help
to determine dynamically the optimum step size for the MEP
based on operating temperature and voltage. It is recommended
that applications that use the HRPWM feature should use the
SFO software.

7-44

C280x ePWM

Deadband Unit Pane

The Deadband unit pane lets you specify parameters for the
Dead-Band Generator (DB) submodule. Since using the DB submodule
is not required for generating a deadband in PWM output, this pane is
empty by default. The elements of the Deadband unit pane shown in
the following image appear only when you select either or both of the
Use deadband for ePWMxA or Use deadband for ePWMxB check
boxes in the ePWMA output or ePWMB output panes.

7-45

C280x ePWM

Deadband polarity
Configures the deadband polarity as AH (active high, the default),
AL (active low), AHC (active high complementary), or ALC (active
low complementary).

7-46

C280x ePWM

Deadband period source
Specifies the source from which the control logic is to be obtained.
Choose Specify via dialog (the default) to enter explicit values,
or Input port to use a value from the input port.

RED deadband period
This field appears only when Use deadband for ePWMxA is
selected in the ePWMA output pane. Enter a value from 0 to
1023 to specify a rising edge delay.

FED deadband period
This field appears only when Use deadband for ePWMxB is
selected in the ePWMB output pane. Enter a value from 0 to
1023 to specify a falling edge delay.

ADC Control Pane

The ADC control pane lets you specify conditions under which ADC
start of conversion is triggered by either or both of the ePWMA and
ePWMB outputs.

7-47

C280x ePWM

Enable ADC start module A
Select to allow ePWMA to trigger ADC start of conversion. This
check box is cleared by default.

7-48

C280x ePWM

Number of event for SOCA to be generated
This field appears only when you check the Enable ADC start
module A check box. Specify how often you want ADC start of
conversion to be triggered. First event triggers ADC start of
conversion with every event, Second event triggers ADC start
of conversion with every second event, and Third event triggers
ADC start of conversion with every third event.

Module A counter match event condition
This field also appears only when you select the Enable ADC
start module A check box. Specify the counter match condition
that will trigger an ADC start of conversion event. Choices
are CTR=Zero (the default), CTR=PRD, CTRU=CMPA, CTRD=CMPA,
CTRU=CMPB, and CTRD=CMPB.

Enable ADC start module B
Select to allow ePWMB to trigger ADC start of conversion. This
check box is cleared by default.

Number of event for SOCB to be generated
This field appears only when you select the Enable ADC start
module B check box. Specify how often you want ADC start of
conversion to be triggered. First event triggers ADC start of
conversion with every event, Second event triggers ADC start
of conversion with every second event, and Third event triggers
ADC start of conversion with every third event.

Module B counter match event condition
This field also appears only when you select the Enable ADC
start module B check box. Specify the counter match condition
that will trigger an ADC start of conversion event. Choices
are CTR=Zero (the default), CTR=PRD, CTRU=CMPA, CTRD=CMPA,
CTRU=CMPB, and CTRD=CMPB.

PWM Chopper Control Pane

The PWM chopper control pane lets you specify parameters for
the PWM-Chopper (PC) submodule. The PC submodule allows
a high-frequency carrier signal to modulate the PWM waveform
generated by the AQ and DB modules.

7-49

C280x ePWM

Chopper module enable
Select to enable the chopper module. Use of the chopper module is
optional, so this check box is cleared by default.

Chopper frequency divider
Chopper frequency divider is a prescaler that is used to set
the frequency of the chopper clock. The system clock speed is
divided by this value to determine the chopper clock frequency.
Choose an integer value from 1 to8.

7-50

C280x ePWM

Chopper clock cycles width of first pulse
Choose an integer value from 1 to 16 to set the width of the first
pulse. Use this feature to provide a high-energy first pulse to
ensure hard and fast power switch turn on.

Chopper pulse duty cycle
The duty cycles of the second and subsequent pulses are also
programmable. Choices are 12.5%, 25%, 37.5%, 50%, 62.5%, 75%,
and 87.5%.

Trip Zone Unit Pane

The Trip Zone unit pane lets you specify parameters for the Trip-zone
(TZ) submodule. Each ePWM module is connected to six TZ signals
(TZ1 to TZ6) that are sourced from the GPIO MUX. These signals
indicate external fault or trip conditions. Use the settings in this pane
to program the EPWM outputs to respond when faults occur.

7-51

C280x ePWM

Trip zone source
Specifies the source from which the control logic is to be obtained.
Choose Specify via dialog (the default) to explicitly enable
Trip-zone signals, or Input port to use information from the
input port.

7-52

C280x ePWM

Enable One-Shot TZ1
Enable One-Shot TZ2
Enable One-Shot TZ3
Enable One-Shot TZ4
Enable One-Shot TZ5
Enable One-Shot TZ6

Select any of these check boxes to enable the corresponding
Trip-zone signal in One-Shot Mode. In this mode, when the trip
event is active, the respective action on the EPWMxA/B output
is carried out immediately and is latched. The condition remains
latched and can only be cleared by the user under software control.

Enable Cyclic TZ1
Enable Cyclic TZ2
Enable Cyclic TZ3
Enable Cyclic TZ4
Enable Cyclic TZ5
Enable Cyclic TZ6

Select any of these check boxes to enable the corresponding
Trip-zone signal in Cycle-by-Cycle Mode. In this mode, when the
trip event is active, the respective action on the EPWMxA/B output
is carried out immediately and is latched. In Cycle-by-Cycle Mode,
the condition is automatically cleared when the PWM Counter
reaches zero. Therefore, in Cycle-by-Cycle Mode, the trip event is
cleared or reset every PWM cycle.

ePWMxA forced to
ePWMxB forced to

Upon a fault condition, the ePWMxA and/or ePWMxB output can
be overridden and forced to one of the following: No action (the
default), High, Low, or Hi-Z(High Impedance).

See Also C280x ADC

7-53

C280x eQEP

Purpose Quadrature encoder pulse circuit

Library c280xdspchiplib in Target for TI C2000

Description The enhanced quadrature encoder pulse (eQEP) module is used for
direct interface with a linear or rotary incremental encoder to get
position, direction, and speed information from a rotating machine for
use in a high-performance motion and position-control system.

7-54

C280x eQEP

Dialog
Box

General Pane

Module
As many as two eQEP units are allowed on a single C280x-based
board. Choose eQEP1 (the default) or eQEP2.

Position counter mode
The input signals QEPA and QEPB are processed by the
Quadrature Decoder Unit (QDU) to produce clock (QCLK) and
direction (QDIR) signals. Choose the position counter mode
appropriate to the way the input to the eQEP module is encoded.

7-55

C280x eQEP

Choices are Quadrature-count (the default), Direction-count,
Up-count, and Down-count.

Positive rotation
This field appears only when you choose Quadrature-count in
Position counter mode. Choose the direction that represents
positive rotation: Clockwise (the default) or Counterclockwise.

External clock rate
This field appears only when you choose Direction-count,
Up-count, or Down-count in Position counter mode. In these
cases, you can program clock generation to the position counter to
occur on both rising and falling edges of the QEPA input or on the
rising edge only. The effect of choosing the former is increasing
the measurement resolution by a factor of 2. Choices are 2x
resolution: Count the rising/falling edge (the default) or
1x resolution: Count the rising edge only.

Quadrature phase error flag output port
This check box appears only when you choose Quadrature-count
in Position counter mode. Select this check box if you want to
generate an interrupt when the QEPA and QEPB signals fall out
of their normal state of being 90 degrees out of phase.

Quadrature direction flag output port
This check box appears only when you choose Quadrature-count
in Position counter mode. Select this check box if you want to
generate an interrupt when the direction of counting is reversed
by swapping the QEPA and QEPB input signals.

Invert input QEPxA polarity
Invert input QEPxB polarity
Invert input QEPxI polarity
Invert input QEPxS polarity

Select any of these check boxes to invert the polarity of the
respective eQEP input signal.

Index pulse gating option
Select this check box to enable gating of the index pulse.

7-56

C280x eQEP

Sample time
Enter the sample time in seconds.

Position Counter Pane

Output position counter
This check box is selected by default. Leave it selected to output
the position counter signal PCSOUT from the position counter
and control unit (PCCU).

7-57

C280x eQEP

Maximum position counter value
Enter a maximum value for the position counter. Enter a value
from 0 to 4294967295. The default is the maximum allowed value
of 4294967295.

Enable set to init value on index event
Select to set the position counter to its initialization value on an
index event. This check box is cleared by default.

Set to init value on index event
This field appears only when Enable set to init value on
index event is selected. Choose to set the position counter to
its initialization value on the Rising edge (the default) or the
Falling edge of the index input.

Enable set to init value on strobe event
Select to set the position counter to its initialization value on a
strobe event. This check box is cleared by default.

Set to init value on strobe event
This field appears only when Enable set to init value on
strobe event is selected. Choose to set the position counter to
its initialization value on the Rising edge (the default) or the
Falling edge of the strobe input.

Enable software initialization
Select to allow the position counter to be set to its initialization
value via software. This check box is cleared by default.

Software initialization source
This field appears only when Enable software initialization is
selected. Choose Set to init value at start up (the default)
or Input port to receive the control logic through the input port.

Initialization value
This field appears only when Enable set to init value on
index event, Enable set to init value on strobe event, or
Enable software initialization check box is selected. Enter the
initialization value for the position counter. Enter a value from 0
to 4294967295. The default is 2147483648.

7-58

C280x eQEP

Position counter reset mode
Choose a position counter reset mode, depending on the nature
of the system the eQEP module is working with: Reset on an
index event (the default), Reset on the maximum position,
Reset on the first index event, or Reset on a time unit
event.

Output position counter error flag
This check box appears only when Position counter reset mode
is set to Reset on an index event. Select this check box to
output the position counter error flag on error.

Output latch position counter on index event
This check box appears only when Position counter reset mode
is set to Reset on the maximum position or Reset on the
first index event. The eQEP index input can be configured
to latch the position counter (QPOSCNT) into QPOSILAT on
occurrence of a definite event on this pin. Select this check box to
latch the position counter on each index event.

Index event latch of position counter
This field appears only when the Output latch position
counter on index event check box is selected. Choose one of the
following events to configure the eQEP position counter to latch
on that event: Rising edge, Falling edge, or Software index
marker via input port.

Output latch position counter on strobe event
This check box appears only when Position counter reset mode
is set to Reset on the maximum position or Reset on the
first index event. The eQEP strobe input can be configured
to latch the position counter (QPOSCNT) into QPOSSLAT on
occurrence of a definite event on this pin. Select this check box to
latch the position counter on each strobe event.

Strobe event of latched position counter
This field appears only when the Output latch position counter
on strobe event check box is selected. Choose Rising edge to
latch on the rising edge of the strobe event input, or Depending

7-59

C280x eQEP

on direction to latch on the rising edge in the forward direction
and the falling edge in the reverse direction.

Speed Calculation Pane

Enable QEP capture
The eQEP peripheral includes an integrated edge capture unit
to measure the elapsed time between the unit position events.
Check this check box to enable the edge capture unit. This check
box is cleared by default.

7-60

C280x eQEP

Output capture timer
Select this check box to output the capture timer into the capture
period register. This check box is cleared by default.

Output capture period timer
Select this check box to output the capture period into the capture
period register. This check box is cleared by default.

eQEP capture timer prescaler
The eQEP capture timer runs from prescaled SYSCLKOUT. The
capture timer period is the value of SYSCLKOUT divided by
the value you choose in this field. Choices are 1, 2, 4, 8, 16, 32,
64, and 128 (the default).

Unit position event prescaler
The timing of the unit position event is determined by prescaling
the quadrature-clock (QCLK). QCLK is divided by the value you
choose in this popup. Choices are 4, 8, 16, 32, 64, 128, 256, 512,
1024, and 2048 (the default).

Enable and output overflow error flag
Select this check box to enable and output the eQEP overflow
error flag in the event of capture timer overflow between unit
position events.

Enable and output direction change error flag
Select this check box to enable and output the direction change
error flag.

Capture timer and position
Choose the event that triggers the latching of the capture timer
and capture period register: On position counter read (the
default) or On unit time-out event.

Unit timer period
This field appears only when you choose On unit time-out
event in Capture timer and position. Enter a value for the
unit timer period from 0 to 4294967295. The default is 100000000.

7-61

C280x eQEP

Output capture timer latched value
Select this check box to output the capture timer latched value
from the QCTMRLAT register.

Output capture timer period latched value
Select this check box to output the capture timer period latched
value from the QCPRDLAT register.

Output position counter latched value
Select this check box to output the position counter latched value
from the QPOSLAT register.

Compare Output Pane

7-62

C280x eQEP

Enable position-compare sync signal output
The eQEP peripheral includes a position-compare unit that is
used to generate the position-compare sync signal on compare
match between the position counter register (QPOSCNT) and the
position-compare register (QPOSCMP). Select this check box to
enable the position-compare sync signal output. This check box is
cleared by default.

Sync output pin selection
Choose which pin is used for the sync signal output. Choices are
Index pin is used for sync output (the default) and Strobe
pin is used for sync output.

Compare value source
Choose the source of the value to use in the position comparison.
Choose Specify via dialog (the default) to specify a fixed value
or Input port to read the value from the input port.

Position compare shadow load mode
This field lets you enable or disable shadow mode for use in
generating the position-compare sync signal (shadow mode is
enabled by default). When shadow mode is enabled, you can also
choose an event to trigger the loading of the shadow register value
into the active register.

Choose Disable shadow mode to disable shadow mode. Choose
Load on QPOSCNT=0 (the default) to load on the position-counter
zero event. Choose Load on QPOSCNT=QPOSCMP to load on compare
match.

Position compare value
This field appears only when you choose Specify via dialog in
Compare value source. Enter a value from 0 to 4294967295.
The default is 4294967295. This value is loaded into the
position-compare register (QPOSCMP).

7-63

C280x eQEP

Sync output pulse width
The pulse stretcher logic in the position-compare unit generates
a programmable position-compare sync pulse output on the
position-compare match.

Enter a value from 1 to 4096 to determine the pulse width of the
position-compare sync output signal. The default is 1.

Polarity of sync output
Choose a value to determine the polarity of the sync output signal:
Active high (the default) or Active low.

7-64

C280x eQEP

Watchdog Unit Pane

Enable watchdog time out flag via output port
The eQEP peripheral contains a watchdog timer that monitors the
quadrature-clock to indicate proper operation of the motion-control
system. Select this check box to enable the watchdog time out flag.

Watchdog timer
Enter the time-out value for the watchdog timer. Enter a value
from 0 to 65535 (the default).

7-65

C280x eQEP

Signal Data Types Pane

The image above shows the default condition of the Signal data types
pane. Choosing any of a number of options in other panes of the C280x
eQEP dialog box causes a corresponding popup to appear in the Signal
data types pane.

The following table summarizes the options for which you can set the
data type in the Signal data types pane:

7-66

C280x eQEP

Pane Option

Quadrature phase error flag output portGeneral

Quadrature direction flag output port

Output position counter (selected by default)

Output position counter error flag

Output latch position counter on index event

Position
counter

Output latch position counter on strobe event

Output capture timer

Output capture period timer

Enable and output overflow error flag

Enable and output direction change error flag

Output capture timer latched value

Output capture timer period latched value

Speed
calculation

Output position counter latched value

Watchdog unit Enable watchdog time out flag via output port

The fields that appear on the Signal data types pane are named
similarly to these options. For example, Position counter value
data type on the Signal data types pane corresponds to the Output
position counter option on the Position counter pane.

For all data type fields, valid data types are auto, double, single, int8,
uint8, int16, uint16, int32, uint32, and boolean.

7-67

C280x eQEP

Interrupt Pane

The image above shows the default condition of the Interrupt pane.
Interrupts corresponding to specific events are enabled or disabled
based on the settings in this pane.

Position counter error interrupt enable
Check this box to enable position counter error interrupts. This
checkbox is cleared by default.

7-68

C280x eQEP

Quadrature phase error interrupt enable
Check this box to enable quadrature phase error interrupts. This
checkbox is cleared by default.

Quadrature direction change interrupt enable
Check this box to enable quadrature direction change interrupts
for changes in the counting direction. This checkbox is cleared
by default.

Watchdog timeout interrupt enable
The eQEP Peripheral contains a watchdog timer that monitors
the quadrature clock. Check this box to enable watchdog timeout
interrupts. This checkbox is cleared by default.

Position counter underflow interrupt enable
Check this box to enable position counter underflow interrupts.
This checkbox is cleared by default.

Position counter overflow interrupt enable
Check this box to enable position counter overflow interrupts.
This checkbox is cleared by default.

Position-compare ready interrupt enable
Check this box to enable position-compare ready interrupts. This
checkbox is cleared by default.

Position-compare match interrupt enable
Check this box to enable position-compare match interrupts. This
checkbox is cleared by default.

Strobe event latch interrupt enable
Check this box to enable strobe event latch interrupts. This
checkbox is cleared by default.

Index event latch interrupt enable
Check this box to enable index event latch interrupts. This
checkbox is cleared by default.

Unit timeout interrupt enable
Check this box to enable unit timeout interrupts. This checkbox is
cleared by default.

7-69

C280x GPIO Digital Input

Purpose Configure general purpose input pins

Library c280xdspchiplib in Target for TI C2000

Description This block configures the general purpose I/O (GPIO) MUX registers
that control the operation of GPIO shared pins for digital input. Each
I/O port has one MUX register that selects peripheral operation or
digital I/O operation. Reset configures all pins for I/O operation. There
are 35 pins total. Any pin you select for input through the dialog box
cannot be used simultaneously as an output. Peripherals connected to
that pin must be disabled. For each pin selected for input operation, you
can specify the type of signal qualification required.

Dialog
Box

7-70

C280x GPIO Digital Input

GPIO Group
Each group contains eight ports, with the exception of the
last one which contains two. Select the input group to use:
GPIO0~GPIO7, GPIO8~GPIO15, GPIO16~GPIO23, GPIO24~GPIO31,
or GPIO32~GPIO34.

GPIO pins for input
For each GPIO Group, select the specific pins to enable for
digital input. For example, for the GPIO0~GPIO7 group, you might
wish to select the GPIO0, GPIO1, GPIO2, and GPIO5 pins, as
shown in the following figure:

7-71

C280x GPIO Digital Input

Pins that you do not selects are available for peripheral
functionality or output. The following table shows the peripherals
available for each pin.

GPIO Name Available Peripherals

GPIO0 EPWM1A

GPIO1 EPWM1B; SPISIMOD

GPIO2 EPWM2A

GPIO3 EPWM2B; SPISOMID

GPIO4 EPWM3A

GPIO5 EPWM3B; SPICLKD; ECAP1

GPIO6 EPWM4A; EPWMSYNCI;
EPWMSYNCO

GPIO7 EPWM4B; SPISTED; ECAP2

GPIO8 EPWM5A; CANTXB;
ADCSOCAO

GPIO9 EPWM5B; SCITXB; ECAP3

GPIO10 EPWM6A; CANRXB;
ADCSOCBO

GPIO11 EPWM6B; SCIRXB; ECAP4

GPIO12 TZ1; CANTXB; SPISIMOB

GPIO13 TZ2; CANRXB; SPISOMIB

GPIO14 TZ3; SCITXB; SPICLKB

GPIO15 TZ4; SCIRXB; SPISTEB

GPIO16 SPISIMOA; CANTXB; TZ5

GPIO17 SPISOMIA; CANRXB; TZ6

GPIO18 SPICLKA; SCITXB

7-72

C280x GPIO Digital Input

GPIO Name Available Peripherals

GPIO19 SPISTEA; SCIRXB

GPIO20 EQEP1A; SPISIMOC;
CANTXB

GPIO21 EQEP1B; SPISOMIC;
CANRXB

GPIO22 EQEP1S; SPICLKC; SCITXB

GPIO23 EQEP1I; SPISTEC; SCIRXB

GPIO24 ECAP1; EQEP2A; SPISIMOB

GPIO25 ECAP2; EQEP2B; SPISOMIB

GPIO26 ECAP3; EQEP2I; SPICLKB

GPIO27 ECAP4; EQEP2S; SPISTEB

GPIO28 SCIRXDA; TZ5

GPIO29 SCITXDA; TZ6

GPIO30 CANRXA

GPIO31 CANTXA

GPIO32 SDAA; EPWMSYNCI;
ADCSOCAO

GPIO33 SCLA; EPQMSYNCO;
ADCSOCBO

GPIO34 Reserved

Qualification type for GPIO[pin#]
Each pin selected for input offers three signal qualification types:

• Sync to SYSCLKOUT — This setting is the default for all pins
at reset. Using this qualification type, the input signal is
synchronized to the system clock SYSCLKOUT. The following
figure shows the input signal measured on each tick of the
system clock, and the resulting output from the qualifier.

7-73

C280x GPIO Digital Input

• Qualification using 3 samples — This setting requires
three consecutive cycles of the same value for the output value
to change. The following figure shows that, in the third cycle,
the GPIO value changes to 0, but the qualifier output is still 1
because it waits for three consecutive cycles of the same GPIO
value. The next three cycles all have a value of 0, and the
output from the qualifier changes to 0 immediately after the
third consecutive value is received.

• Qualification using 6 samples — This setting requires six
consecutive cycles of the same GPIO input value for the output
from the qualifier to change. In the following figure, the glitch
A has no effect on the output signal. When the glitch occurs,
the counting begins, but the next measurement is low again, so
the count is ignored. The output signal does not change until
six consecutive samples of the high signal are measured.

7-74

C280x GPIO Digital Input

Qualification sampling period prescaler
Visible only when an appropriate setting for Qualification type
for GPIO [pin#] is selected. The qualification sampling period
prescaler, with possible values of 0 to 255, calculates the frequency
of the qualification samples or the number of system clock
ticks per sample. The formula for calculating the qualification
sampling frequency is:

SYSCLKOUT
escaler2 * Pr

with the exception of zero. When Qualification sampling
period prescaler=0, a sample is taken every SYSCLKOUT clock
tick. For example, a prescale setting of 0 means that a sample is
taken on each SYSCLKOUT tick.

The following figure shows the SYSCLKOUT ticks, a sample
taken every clock tick, and the Qualification type set
to Qualification using 3 samples. In this case, the
Qualification sampling period prescaler=0:

7-75

C280x GPIO Digital Input

In the next figure Qualification sampling period prescaler=1.
A sample is taken every two clock ticks, and the Qualification
type is set to Qualification using 3 samples. The output
signal changes much later than if Qualification sampling
period prescaler=0.

In the following figure, Qualification sampling period
prescaler=2. Thus , a sample is taken every four clock ticks,
and the Qualification type is set to Qualification using 3
samples.

7-76

C280x GPIO Digital Input

Sample time
Specifies the time interval between output samples. To inherit
sample time from the upstream block, set this parameter to -1.
For more information, refer to the section on “Specifying Sample
Time” in the Simulink documentation.

Data type
Specifies the data type of the input. The input is read as 16-bit
integer, and then cast to the selected data type. Valid data types
are auto, double, single, int8, uint8, int16, uint16, int32,
uint32 or boolean.

See Also C280x GPIO Digital Output

7-77

C280x GPIO Digital Output

Purpose Configure general purpose output pins

Library c280xdspchiplib in Target for TI C2000

Description This block configures the general-purpose I/O (GPIO) registers that
control the GPIO shared pins for digital output. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
I/O operation. There are 35 pins total. Any pin selected for output
through the dialog box cannot be used simultaneously as an input. For
each specified output pin you select, you can elect to toggle the GPIO
pin signal.

Dialog
Box

GPIO Group
Each group contains eight ports, with the exception of the last
group which contains two. There are 35 ports, or pins total.

7-78

C280x GPIO Digital Output

Select the output group to use: GPIO0~GPIO7, GPIO8~GPIO15,
GPIO16~GPIO23, GPIO24~GPIO31, or GPIO32~GPIO34.

GPIO pins for output
Select the pins for output from each group. Pins that you do not
select for output can be used for input or peripheral functionality.
Refer to the C280x GPIO Digital Input block for a table of all
available peripherals for each pin.

A value of True at the input of the block drives the selected GPIO
pin high. A value of False at the input of the block grounds the
selected GPIO pin.

Toggle GPIO[bit#]
For each pin selected for output, you can elect to toggle the signal
of that pin. In Toggle mode, a value of True at the input of the
block switches the GPIO pin output level. Thus, if the GPIO pin
was driven high, in Toggle mode, with the value of True at the
input, the pin output level is driven low. If the GPIO pin was
driven low, in Toggle mode, with the value of True at the input of
the block, the same pin output level is driven high. If the input of
the block is False, there is no effect on the GPIO pin output level.

Note The outputs of this block can be vectorized.

See Also C280x GPIO Digital Input

7-79

C280x Hardware Interrupt

Purpose Interrupt Service Routine to handle hardware interrupt onC280x
processor

Library c280xdspchiplib in Target for TI C2000

Description For many systems, an execution scheduling model based on a timer
interrupt is not sufficient to ensure a real-time response to external
events. The C280x Hardware Interrupt block addresses this problem
by allowing for the asynchronous processing of interrupts triggered by
events managed by other blocks in the C280x DSP Chip Support Library.

The C280x blocks that can generate an interrupt for asynchronous
processing are:

• C280x ADC

• C280x eCAN Receive

• C280x eCAN Transmit

• C280x eCAP

• C280x eQEP

• C280x SCI Receive

• C280x SCI Transmit

• C280x Software Interrupt Trigger

• C280x SPI Receive

• C280x SPI Transmit

Only one Hardware Interrupt block can be used in a model. To handle
multiple interrupts, place a Demux block at the output of the Hardware
Interrupt block to direct function calls to the appropriate function-call
subsystems.

For details about this block, refer to C280x Hardware Interrupt block in
your Link for Code Composer Studio Development Tools documentation.

7-80

C280x Hardware Interrupt

Vectorized Output

This block outputs a function call. The size of the function call line
equals the number of interrupts the block is set to handle. the
block dialog box displays four parameters for each interrupt. These
parameters comprise a set of four vectors of equal length. Each
interrupt is represented by one element from each parameter (four
elements total), one from the same position in each of these vectors.

The following parameters describe the elements in the interrupt vector:

• CPU interrupt numbers

• PIE interrupt numbers

• Task priorities

• Preemption flags

Thus, one interrupt is described by a CPU interrupt number, a PIE
interrupt number, a task priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single
interrupt for a single peripheral or peripheral module. The following
table maps CPU and PIE interrupt numbers to these peripheral
interrupts. The row numbers are CPU values and the column numbers
are the PIE values.

Note The TINT0 (TIMER 0) interrupt is always reserved, and will
generate errors if used.

7-81

C280x Hardware Interrupt
C
2

8
0

x
P
er

ip
h
er

a
l
In

te
rr

u
p
t

V
ec

to
r

V
a
lu

es

1
2

3
4

5
6

7
8

1
S

E
Q

1I
N

T
(A

D
C

)
S

E
Q

2I
N

T
(A

D
C

)
R

es
er

ve
d

X
IN

T1
X

IN
T2

A
D

C
IN

T
(A

D
C

)
TI

N
T0

(T
IM

E
R

0)
W

AK
E

IN
T

(L
P

M
/W

D
)

2
E

P
W

M
1_

TZ
IN

T
(e

P
W

M
1)

E
PW

M
2_

TZ
IN

T
(e

P
W

M
2)

E
P

W
M

3_
TZ

IN
T

(e
P

W
M

3)
E

P
W

M
4_

TZ
IN

T
(e

P
W

M
4)

E
P

W
M

5_
TZ

IN
T

(e
P

W
M

5)
E

P
W

M
6_

TZ
IN

T
(e

P
W

M
6)

R
es

er
ve

d
R

es
er

ve
d

3
E

P
W

M
1_

IN
T

(e
P

W
M

1)
E

PW
M

2_
IN

T
(e

P
W

M
2)

E
P

W
M

3_
IN

T
(e

P
W

M
3)

E
P

W
M

4_
IN

T
(e

P
W

M
4)

E
P

W
M

5_
IN

T
(e

P
W

M
5)

E
P

W
M

6_
IN

T
(e

P
W

M
6)

R
es

er
ve

d
R

es
er

ve
d

4
E

C
AP

1_
IN

T
(e

C
A

P1
)

E
C

A
P

2_
IN

T
(e

C
A

P
2)

E
C

A
P

3_
IN

T
(e

C
A

P
3)

E
C

A
P

4_
IN

T
(e

C
A

P
4)

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

5
E

Q
E

P
1_

IN
T

(e
Q

E
P

1)
E

Q
E

P
2_

IN
T

(e
Q

E
P

2)
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

6
S

P
IR

XI
N

TA
(S

P
I-A

)
S

P
IT

X
IN

TA
(S

P
I-A

)
S

P
IR

X
IN

TB
(S

PI
-B

)
S

P
IT

X
IN

TB
(S

P
I-B

)
S

P
IR

X
IN

TC
(S

P
I-C

)
S

P
IT

X
IN

TC
(S

P
I-C

)
SP

IR
X

IN
TD

(S
P

I-D
)

S
PI

TX
IN

TD
(S

P
I-D

)

7
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

8
I2

C
IN

T2
A

(I2
C

-A
)

I2
C

IN
T1

A
(I2

C
-A

)
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

9
S

C
IR

X
IN

TA
(S

C
I-A

)
S

C
IT

X
IN

TA
(S

C
I-A

)
S

C
IR

X
IN

TB
(S

C
I-B

)
S

C
IT

X
IN

TB
(S

C
I-B

)
E

C
A

N
0I

N
TA

(C
A

N
-A

)
E

C
A

N
1I

N
TA

(C
A

N
-A

)
E

C
A

N
0I

N
TB

(C
A

N
-B

)
E

C
A

N
1I

N
TB

(C
A

N
-B

)

10
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

11
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

12
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

7-82

C280x Hardware Interrupt

The task priority indicates the relative importance tasks associated with
the asynchronous interrupts. If an interrupt triggers a higher-priority
task while a lower-priority task is running, the execution of the
lower-priority task is suspended while the higher-priority task is
executed. The lowest value represents the highest priority. The default
priority value of the base rate task is 40, so the priority value for each
asynchronously triggered task must be less than 40 for these tasks to
cause the suspension of the base rate task.

The preemption flag determines whether a given interrupt is
preemptable. Preemption overrides prioritization, such that
a preemptable task of higher priority can be preempted by a
nonpreemptable task of lower priority.

Dialog
Box

CPU interrupt number(s)
Enter a vector of CPU interrupt numbers for the interrupts you
want to process asynchronously.

7-83

C280x Hardware Interrupt

See the table of C280x Peripheral Interrupt Vector Values on page
7-82 for a mapping of CPU interrupt number to interrupt names.

PIE interrupt number(s)
Enter a vector of PIE interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C280x Peripheral Interrupt Vector Values on page
7-82 for a mapping of CPU interrupt number to interrupt names.

Simulink task priority(s)
Enter a vector of task priorities for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 7-81
for an explanation of task priorities.

Preemption flag(s)
Enter a vector of preemption flags for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 7-81
for an explanation of preemption flags.

Enable simulation input
Select this check box if you want to be able to test asynchronous
interrupt processing in the context of your Simulink model.

Note Using this check box is the only way you can test
asynchronous interrupt processing behavior in Simulink.

References For detailed information about interrupt processing, refer to
TMS320x280x DSP System Control and Interrupts Reference Guide,
SPRU712B, available at the Texas Instruments Web site.

See Also C280x SW Int Trigger, Idle Task

7-84

C280x SCI Receive

Purpose Receive data on target via serial communications interface (SCI) from
host

Library c280xdspchiplib in Target for TI C2000

Description The C280x SCI Receive block supports asynchronous serial digital
communications between the target and other asynchronous peripherals
in nonreturn-to-zero (NRZ) format. This block configures the C280x
DSP target to receive scalar or vector data from the COM port via the
C280x target’s COM port.

Note For any given model, you can have only one C280x SCI Receive
block per module. There are two modules, A and B, which can be
configured through the F2808 eZdsp target preferences block.

Many SCI-specific settings are in the DSPBoard section of the F2808
eZdsp target preferences block. You should verify that these settings
are correct for your application.

7-85

C280x SCI Receive

Dialog
Box

SCI module
SCI module to be used for communications.

7-86

C280x SCI Receive

Additional package header
This field specifies the data located at the front of the received
data package, which is not part of the data being received, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not received nor are they included
in the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Transmit block.

Additional package terminator
This field specifies the data located at the end of the received
data package, which is not part of the data being received,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not received nor are they
included in the total byte count.

Data type
Data type of the output data. Available options are single, int8,
uint8, int16, uint16, int32, or uint32.

Data length
How many of Data type the block will receive (not bytes).
Anything more than 1 is a vector. The data length is inherited
from the input (the data length originally input to the host-side
SCI Transmit block).

Initial output
Default value from the c280x SCI Receive block. This value is
used, for example, if a connection time-out occurs and the When

7-87

C280x SCI Receive

connection timeout field is set to “Output the last received
value”, but nothing yet has been received.

When connection timeout
Specifies what to output if a connection time-out occurs. If
“Output the last received value” is selected, the last received value
is what is output, unless none has been received yet, in which case
the Initial output is considered the last received value.

If “Output customized value” is selected, a field for specifying a
custom value is added to the dialog box (as shown in the following
figure).

7-88

C280x SCI Receive

7-89

C280x SCI Receive

Sample time
Sample time, Ts, for the block’s input sampling. To execute this
block asynchronously, set Sample Time to -1, and refer to
“Asynchronous Interrupt Processing” on page 1-14 for a discussion
of block placement and other necessary settings.

Output receiving status
When this field is checked, the c280x SCI Receive block adds
another output port for the transaction status, and appears as
shown in the following figure.

The error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was waiting to receive
data

• 2: There is an error in the received data (checksum error)

• 3: SCI parity error flag — Occurs when a character is received
with a mismatch

• 4: SCI framing error flag — Occurs when an expected stop bit
is not found

Enable receive FIFO interrupt
If this option is selected, an interrupt is posted when FIFO is full,
allowing the subsystem to take some sort of action (for example,
read data as soon as it is received). If this option is cleared, the
block stays in polling mode. If the block is in polling mode and not
blocking, it checks the FIFO to see if there is data to read. If data
is present, it reads and outputs. If no data is present, it continues.
If the block is in polling mode and blocking, it waits until data is
available to read (after data length is reached).

7-90

C280x SCI Receive

Receive FIFO interrupt level
This parameter is enabled when the Enable receive FIFO
interrupt option is selected. Select an interrupt level from 0 to
16. The default level is 0.

References Detailed information on the SCI module is in TMS320x281x, 280x DSP
Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also C280x SCI Transmit, C280x Hardware Interrupt

7-91

C280x SCI Transmit

Purpose Transmit data from target via serial communications interface (SCI)
to host

Library c280xdspchiplib in Target for TI C2000

Description The C280x SCI Transmit block transmits scalar or vector data in int8
or uint8 format from the C280x target’s COM ports in nonreturn-to-zero
(NRZ) format. You can specify how many of the six target COM ports to
use. The sampling rate and data type are inherited from the input port.
The data type of the input port must be one of the following: single,
int8, uint8, int16, uint16, int32, uint32. If no data type is specified, the
default data type is uint8.

Note For any given model, you can have only one C280x SCI Transmit
block per module. There are two modules, A and B, which can be
configured through the F2808 eZdsp target preferences block.

Many SCI-specific settings are in the DSPBoard section of the Target
Preferences block. You should verify that these settings are correct
for your application.

Fixed-point inputs are not supported for this block.

7-92

C280x SCI Transmit

Dialog
Box

SCI module
SCI module to be used for communications.

Additional package header
This field specifies the data located at the front of the sent data
package, which is not part of the data being transmitted, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not sent nor are they included in
the total byte count.

7-93

C280x SCI Transmit

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Receive block.

Additional package terminator
This field specifies the data located at the end of the sent
data package, which is not part of the data being transmitted,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not sent nor are they
included in the total byte count.

Enable transmit FIFO interrupt
If checked, an interrupt is posted when FIFO is full, allowing the
subsystem to take some sort of action.

References Detailed information on the SCI module is in TMS320x281x, 280x DSP
Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also C280x SCI Receive, C280x Hardware Interrupt

7-94

C280x SW Int Trigger

Purpose Generate software triggered nonmaskable interrupt

Library c280xdspchiplib in Target for TI C2000

Description

When you add this block to a model, the block polls the input port for
the input value. When the input value is greater than the value in
Trigger software interrupt when input value is greater than, the
block posts the interrupt to a Hardware Interrupt block in the model.

To use this block, add a Hardware Interrupt block to your model
to process the software triggered interrupt from this block into an
interrupt service routine on the processor. Set the interrupt number
in the Hardware Interrupt block to the value you set here in CPU
interrupt number.

The CPU and PIE interrupt numbers together specify a single interrupt
for a single peripheral or peripheral module. The following table maps
CPU and PIE interrupt numbers to these peripheral interrupts. The row
numbers are CPU values and the column numbers are the PIE values.

Note Fixed-point inputs are not supported for this block.

7-95

C280x SW Int Trigger
C
2

8
0
x

P
er

ip
h
er

a
l

In
te

rr
u
p
t

V
ec

to
r

V
a
lu

es

1
2

3
4

5
6

7
8

1
S

E
Q

1I
N

T
(A

D
C

)
S

E
Q

2I
N

T
(A

D
C

)
R

es
er

ve
d

X
IN

T1
X

IN
T2

A
D

C
IN

T
(A

D
C

)
TI

N
T0

(T
IM

E
R

0)
W

A
K

E
IN

T
(L

P
M

/W
D

)

2
EP

W
M

1_
TZ

IN
T

(e
P

W
M

1)
E

P
W

M
2_

TZ
IN

T
(e

P
W

M
2)

E
P

W
M

3_
TZ

IN
T

(e
P

W
M

3)
EP

W
M

4_
TZ

IN
T

(e
P

W
M

4)
E

P
W

M
5_

TZ
IN

T
(e

P
W

M
5)

E
P

W
M

6_
TZ

IN
T

(e
P

W
M

6)
R

es
er

ve
d

R
es

er
ve

d

3
E

P
W

M
1_

IN
T

(e
P

W
M

1)
E

P
W

M
2_

IN
T

(e
P

W
M

2)
E

P
W

M
3_

IN
T

(e
P

W
M

3)
E

P
W

M
4_

IN
T

(e
P

W
M

4)
E

P
W

M
5_

IN
T

(e
P

W
M

5)
E

P
W

M
6_

IN
T

(e
P

W
M

6)
R

es
er

ve
d

R
es

er
ve

d

4
E

C
A

P
1_

IN
T

(e
C

A
P

1)
EC

A
P

2_
IN

T
(e

C
A

P
2)

E
C

A
P

3_
IN

T
(e

C
A

P
3)

E
C

A
P

4_
IN

T
(e

C
A

P
4)

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

5
E

Q
E

P
1_

IN
T

(e
Q

E
P

1)
E

Q
E

P
2_

IN
T

(e
Q

EP
2)

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

6
S

P
IR

X
IN

TA
(S

P
I-A

)
S

P
IT

X
IN

TA
(S

P
I-A

)
S

P
IR

XI
N

TB
(S

P
I-B

)
S

P
IT

X
IN

TB
(S

P
I-B

)
S

P
IR

X
IN

TC
(S

P
I-C

)
S

P
IT

X
IN

TC
(S

P
I-C

)
S

P
IR

X
IN

TD
(S

P
I-D

)
S

P
IT

X
IN

TD
(S

PI
-D

)

7
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

8
I2

C
IN

T2
A

(I2
C

-A
)

I2
C

IN
T1

A
(I2

C
-A

)
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

9
S

C
IR

X
IN

TA
(S

C
I-A

)
S

C
IT

X
IN

TA
(S

C
I-A

)
S

C
IR

X
IN

TB
(S

C
I-B

)
S

C
IT

X
IN

TB
(S

C
I-B

)
E

C
AN

0I
N

TA
(C

A
N

-A
)

E
C

A
N

1I
N

TA
(C

A
N

-A
)

E
C

A
N

0I
N

TB
(C

A
N

-B
)

E
C

A
N

1I
N

TB
(C

A
N

-B
)

10
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

11
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

12
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

7-96

C280x SW Int Trigger

Dialog
Box

CPU interrupt number
Specify the interrupt to which the block responds. Interrupt
numbers are integers ranging from 1 to 12.

PIE interrupt number
Enter an integer value from 1 to 8 to set the Peripheral Interrupt
Expansion (PIE) interrupt number.

Trigger software interrupt when input value is greater than:
Sets the value above which the block posts an interrupt. Enter
the value for the level that indicates that the interrupt is asserted
by a requesting routine.

7-97

C280x SW Int Trigger

References For detailed information about interrupt processing, refer to
TMS320x280x DSP System Control and Interrupts Reference Guide,
SPRU712B, available at the Texas Instruments Web site.

See Also C280x Hardware Interrupt

7-98

C280x SPI Receive

Purpose Receive data via serial peripheral interface (SPI) on target

Library c280xdspchiplib in Target for TI C2000

Description The C280x SPI Receive supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode.

In master mode, the SPISIMO pin transmits data and the SPISOMI pin
receives data. When master mode is selected, the SPI initiates the data
transfer by sending a serial clock signal (SPICLK), which is used for the
entire serial communications link. Data transfers are synchronized to
this SPICLK, which enables both master and slave to send and receive
data simultaneously. The maximum for the clock is one quarter of the
DSP controller’s clock frequency.

For any given model, you can have only one C280x SPI Receive block
per module. There are two modules, A and B, which can be configured
through the F2808 eZdsp target preferences block.

Note Many SPI-specific settings are in the DSPBoard section of the
Target Preferences block. You should verify that these settings are
correct for your application.

7-99

C280x SPI Receive

Dialog
Box

Select module
SPI module (A-D) to be used for communications.

Data length
Specifies how many uint16s are expected to be received. Select
1 through 16.

Enable blocking mode
If this option is selected, system waits until data is received before
continuing processing.

7-100

C280x SPI Receive

Output receive error status
When this field is checked, the c280x SPI Receive block adds
another output port for the transaction status, and appears as
shown in the following figure.

Error status may be one of the following values:

• 0: No errors

• 1: Data loss occurred, (Overrun: when FIFO disabled, Overflow
when FIFO enabled)

• 2: Data not ready, a time out occurred while the block was
waiting to receive data

Post interrupt when data is received
Check this check box to post an asynchronous interrupt when
data is received.

Sample time
Sample time, Ts, for the block’s input sampling. To execute
this block asynchronously, set Sample Time to -1, check the
Post interrupt when message is received box, and refer to
“Asynchronous Interrupt Processing” on page 1-14 for a discussion
of block placement and other necessary settings.

See Also C280x SPI Transmit, C280x Hardware Interrupt

7-101

C280x SPI Transmit

Purpose Transmit data via serial peripheral interface (SPI) to host

Library c280xdspchiplib in Target for TI C2000

Description The C280x SPI Transmit supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode. In master mode, the SPISIMO pin transmits data
and the SPISOMI pin receives data. When master mode is selected,
the SPI initiates the data transfer by sending a serial clock signal
(SPICLK), which is used for the entire serial communications link. Data
transfers are synchronized to this SPICLK, which enables both master
and slave to send and receive data simultaneously. The maximum for
the clock is one quarter of the DSP controller’s clock frequency.

The sampling rate is inherited from the input port. The supported data
type is uint16.

Note For any given model, you can have only one C280x SPI Transmit
block per module. There are two modules, A and B, which can be
configured through the F2808 eZdsp target preferences block.

Many SPI-specific settings are in the DSPBoard section of the target
preferences block. You should verify that these settings are correct
for your application.

7-102

C280x SPI Transmit

Dialog
Box

Select module
SPI module (A-D) to be used for communications.

Output transmit error status
When this field is checked, the c280x SPI Transmit block adds
another output port for the transaction status, and appears as
shown in the following figure.

Error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was transmitting data

7-103

C280x SPI Transmit

• 2: There is an error in the transmitted data (for example,
header or terminator don’t match, length of data expected is too
big or too small)

Enable blocking mode
If this option is selected, system waits until data is sent before
continuing processing.

Post interrupt when data is transmitted
Check this check box to post an asynchronous interrupt when
data is transmitted.

See Also C280x SPI Receive, C280x Hardware Interrupt

7-104

C281x ADC

Purpose Analog-to-digital converter (ADC)

Library c281xdspchiplib in Target for TI C2000

Description The C281x ADC block configures the C281x ADC to perform
analog-to-digital conversion of signals connected to the selected ADC
input pins. The ADC block outputs digital values representing the
analog input signal and stores the converted values in the result
register of your digital signal processor. You use this block to capture
and digitize analog signals from external sources such as signal
generators, frequency generators, or audio devices.

Triggering

The C281x ADC trigger mode depends on the internal setting of the
source start-of-conversion (SOC) signal. In unsynchronized mode the
ADC is usually triggered by software at the sample time intervals
specified in the ADC block. For more information on configuring the
specific parameters for this mode, see “Configuring Acquisition Window
Width for ADC Blocks”.

In synchronized mode, the Event (EV) Manager associated with the
same module as the ADC triggers the ADC. In this case, the ADC
is synchronized with the pulse width modulator (PWM) waveforms
generated by the same EV unit via the ADC Start Event signal
setting. The ADC Start Event is set in the C281x PWM block. See that
block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in
cascaded mode (see below).

Output

The output of the C281x ADC is a vector of uint16 values. The output
values are in the range 0 to 4095 because the C281x ADC is 12-bit
converter.

7-105

C281x ADC

Modes

The C281x ADC block supports ADC operation in dual and cascaded
modes. In dual mode, either module A or module B can be used for the
ADC block, and two ADC blocks are allowed in the model. In cascaded
mode, both module A and module B are used for a single ADC block.

Dialog
Box

ADC Control Pane

Module
Specifies which DSP module to use:

• A — Displays the ADC channels in module A (ADCINA0
through ADCINA7).

• B — Displays the ADC channels in module B (ADCINB0
through ADCINB7).

7-106

C281x ADC

• A and B — Displays the ADC channels in both modules A
and B (ADCINA0 through ADCINA7 and ADCINB0 through
ADCINB7)

Then, use the check boxes to select the desired ADC channels.

Conversion mode
Type of sampling to use for the signals:

• Sequential — Samples the selected channels sequentially

• Simultaneous — Samples the corresponding channels of
modules A and B at the same time

Start of conversion
Type of signal that triggers conversions to begin:

• Software — Signal from software

• EVA — Signal from Event Manager A

• EVB — Signal from Event Manager B

• External — Signal from external hardware

Sample time
Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at
which values are read from the result registers. See “Scheduling
and Timing” on page 1-13 for more information on timing. To
execute this block asynchronously, set Sample Time to -1, check
the Post interrupt at the end of conversion box, and refer to
“Asynchronous Interrupt Processing” on page 1-14 for a discussion
of block placement and other necessary settings.

To set different sample times for different groups of ADC channels,
you must add separate C281x ADC blocks to your model and set
the desired sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, or uint32.

7-107

C281x ADC

Post interrupt at the end of conversion
Check this check box to post an asynchronous interrupt at the
end of each conversion. Note that the interrupt is always posted
at the end of conversion.

Input Channels Pane

Number of conversions
Number of ADC channels to use for analog-to-digital conversions.

Conversion no.
Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be
sampled multiple times during a single conversion sequence.
To oversample, specify the same channel for more than one
conversion. Converted samples are output as a single vector.

Use multiple output ports
If more than one ADC channel is used for conversion, you can use
separate ports for each output and show the output ports on the

7-108

C281x ADC

block. If you use more than one channel and do not use multiple
output ports, the data is output in a single vector.

See Also C281x PWM, C281x Hardware Interrupt

7-109

C281x CAP

Purpose Receive and log capture input pin transitions

Library c281xdspchiplib in Target for TI C2000

Description The C281x CAP block sets parameters for the capture units (CAPs) of
the Event Manager (EV) module. The capture units log transitions
detected on the capture unit pins by recording the times of these
transitions into a two-level deep FIFO stack. The capture unit pins
can be set to detect rising edge, falling edge, either type of transition,
or no transition.

The C281x chip has six capture units — three associated with each
EV module. Capture units 1, 2, and 3 are associated with EVA and
capture units 4, 5, and 6 are associated with EVB. Each capture unit is
associated with a capture input pin.

Note You can have up to two C281x CAP blocks in any one model—one
block for each EV module.

Each group of EV module capture units can use one of two
general-purpose (GP) timers on the target board. EVA capture units
can use GP timer 1 or 2. EVB capture units can use GP timer 3 or 4.
When a transition occurs, the value of the selected timer is stored in the
two-level deep FIFO stack.

Outputs

This block has up to two outputs: a cnt (count) output and an optional,
FIFO status flag output. The cnt output increments each time a
transition of the selected type occurs. The status flag outputs are

• 0 — The FIFO is empty. Either no captures have occurred or the
previously stored capture(s) have been read from the stack. (The
binary version of this flag is 00.)

• 1 — The FIFO has one entry in the top register of the stack. (The
binary version of this flag is 01.)

7-110

C281x CAP

• 2 — The FIFO has two entries in the stack registers. (The binary
version of this flag is 10.)

• 3 — The FIFO has two entries in the stack registers and one or more
captured values have been lost. This occurs because another capture
occurred before the FIFO stack was read. The new value is placed in
the bottom register. The bottom register value is pushed to the top of
the stack and the top value is pushed out of the stack. (The binary
version of this flag is 11.)

Dialog
Box

Data Format Pane

Module
Select the Event Manager (EV) module to use:

• A — Use CAPs 1, 2, and 3.

• B — Use CAPs 4, 5, and 6.

Output overrun status flag
Select to output the status of the elements in the FIFO. The data
type of the status flag is uint16.

7-111

C281x CAP

Send data format
The type of data to output:

• Send 2 elements (FIFO Buffer) — Sends the latest two
values. The output is updated when there are two elements
in the FIFO, which is indicated by bit 13 or 11 or 9 being
sent (CAP x FIFO). If the CAP is polled when fewer than two
elements are captures, old values are repeated. The CAP
registers are read as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b The top value of the FIFO is read and stored in the output
at index 0.

c The new top value of the FIFO (the previously stored bottom
stack value) is read and stored in the output at index 1.

• Send 1 element (oldest) — Sends the older of the two most
recent values. The output is updated when there is at least
one element in the FIFO, which is indicated by any of the bits
13:12, or 11:10, or 9:8 being sent. The CAP registers are read
as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b The top value of the FIFO is read and stored in the output.

• Send 1 element (latest) — Sends the most recent value.
The output is updated when there is at least one element in the
FIFO, which is indicated by any of the bits 13:12, or 11:10, or
9:8 being sent. The CAP registers are read as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b If there are two entries in the FIFO, the bottom value is read
and stored in the output. If there is only one entry in the
FIFO, the top value is read and stored in the output.

7-112

C281x CAP

Sample time
Time between outputs from the FIFO. If new data is not available,
the previous data is sent.

Data type
Data type of the output data. Available options are auto, double,
single, int8, uint8, int16, uint16, int32, uint32, and boolean.
The auto option uses the data type of a connected block that
outputs data to this block. If this block does not receive any input,
auto sets the data type to double.

Note The output of the C281x CAP block can be vectorized.

CAP# Pane

The CAP# panes set parameters for individual CAPs. The particular
CAP affected by a CAP# pane depends on the EV module you selected:

• CAP1 controls CAP 1 or CAP 4, for EV module A or B, respectively.

7-113

C281x CAP

• CAP2 controls CAP 2 or CAP 5, for EV module A or B, respectively.

• CAP3 controls CAP 3 or CAP 6, for EV module A or B, respectively.

Enable CAP#
Select to use the specified capture unit pin.

Edge Detection
Type of transition detection to use for this CAP. Available types are
Rising Edge, Falling Edge, Both Edges, and No transition.

Time Base
The target board GP timer to use. CAPs 1, 2, and 3 can use
Timer 1 or Timer 2. CAPs 4, 5, and 6 can use Timer 3 or
Timer 4.

Scaling
Clock divider factor by which to prescale the selected GP timer
to produce the desired timer counting rate. Available options are
none, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and 1/128. The resulting
rate for each option is shown below.

Scaling Resulting Rate (µs)

none 0.01334

1/2 0.02668

1/4 0.05336

1/8 0.10672

1/16 0.21344

1/32 0.42688

1/64 0.85376

1/128 1.70752

Note The above rates assume a 75 MHz input clock.

7-114

C281x CAP

Post interrupt on CAP#
Check this check box to post an asynchronous interrupt on CAP#.

See Also

C281x Hardware Interrupt

7-115

C281x eCAN Receive

Purpose Enhanced Control Area Network receive mailbox

Library c281xdspchiplib in Target for TI C2000

Description The C281x enhanced Control Area Network (eCAN) Receive block
generates source code for receiving eCAN messages through an
eCAN mailbox. The eCAN module on the DSP chip provides serial
communication capability and has 32 mailboxes configurable for receive
or transmit. The C281x supports eCAN data frames in standard or
extended format.

The C281x eCAN Receive block has up to two and, optionally, three
output ports.

• The first output port is the function call port, and a function call
subsystem should be connected to this port. When a new message is
received, this subsystem is executed.

• The second output port is the message data port. The received data is
output in the form of a vector of elements of the selected data type.
The length of the vector is always 8 bytes.

• The third output port is optional and appears only if Output
message length is selected.

7-116

C281x eCAN Receive

Dialog
Box

Mailbox number
Unique number between 0 and 15 for standard or between 0 and
31 for enhanced CAN mode. It refers to a mailbox area in RAM.
In standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length
29 bits for extended frame size in decimal, binary, or hex. If in
binary or hex, use bin2dec(' ') or hex2dec(' '), respectively,
to convert the entry. The message identifier is associated with a
receive mailbox. Only messages that match the mailbox message
identifier are accepted into it.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

7-117

C281x eCAN Receive

Sample time
Frequency with which the mailbox is polled to determine if a new
message has been received. A new message causes a function call
to be emitted from the mailbox. If you want to update the message
output only when a new message arrives, then the block needs to
be executed asynchronously. To execute this block asynchronously,
set Sample Time to -1, check the Post interrupt when
message is received box, and refer to “Asynchronous Interrupt
Processing” on page 1-14 for a discussion of block placement and
other necessary settings.

Note For information about setting the timing parameters of
the CAN module see “Configuring Timing Parameters for CAN
Blocks”.

Data type
Type of data in the data vector. The length of the vector for the
received message is at most 8 bytes. If the message is less than 8
bytes, the data buffer bytes are right-aligned in the output. Only
uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are allowed. The data are unpacked as follows
using the data buffer, which is 8 bytes.

For uint16 data,

Output[0] = data_buffer[1..0];
Output[1] = data_buffer[3..2];
Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

For uint32 data,

Output[0] = data_buffer[3..0];
Output[1] = data_buffer[7..4];

7-118

C281x eCAN Receive

For example, if the received message has two bytes:

data_buffer[0] = 0x21
data_buffer[1] = 0x43

the uint16 output would be:

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

Output message length
Select to output the message length in bytes to the third output
port. If not selected, the block has only two output ports.

Post interrupt when message is received
Check this check box to post an asynchronous interrupt when a
message is received.

References Detailed information on the eCAN module is in TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature
Number SPRU074A, available at the Texas Instruments Web site.

See Also C281x eCAN Transmit, C281x Hardware Interrupt

7-119

C281x eCAN Transmit

Purpose Enhanced Control Area Network transmit mailbox

Library c281xdspchiplib in Target for TI C2000

Description The C281x enhanced Control Area Network (eCAN) Transmit block
generates source code for transmitting eCAN messages through an
eCAN mailbox. The eCAN module on the DSP chip provides serial
communication capability and has 32 mailboxes configurable for receive
or transmit. The C28x supports eCAN data frames in standard or
extended format.

Note Fixed-point inputs are not supported for this block.

Data Vectors

The length of the vector for each transmitted mailbox message is 8
bytes. Input data are always right-aligned in the message data buffer.
Only uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are accepted. The following examples show how the
different types of input data are aligned in the data buffer

For input of type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

7-120

C281x eCAN Transmit

For input of type uint16,

inputdata [0] = 0x1234

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x00
data buffer[3] = 0x00
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16[2], which is a two-element vector,

inputdata [0] = 0x1234
inputdata [1] = 0x5678

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

7-121

C281x eCAN Transmit

Dialog
Box

Mailbox number
Unique number between 0 and 15 for standard or between 0 and
31 for enhanced CAN mode. It refers to a mailbox area in RAM.
In standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length 29
bits for extended frame size in decimal, binary, or hex. If in binary
or hex, use bin2dec(' ') or hex2dec(' '), respectively, to
convert the entry. The message identifier is coded into a message
that is sent to the CAN bus.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Enable blocking mode
If selected, the CAN block code waits indefinitely for a transmit
(XMT) acknowledge. If cleared, the CAN block code does not wait

7-122

C281x eCAN Transmit

for a transmit (XMT) acknowledge, which is useful when the
hardware might fail to acknowledge transmissions.

Post interrupt when message is transmitted
If selected, an asynchronous interrupt is posted when data is
transmitted.

Note For information about setting the timing parameters of the CAN
module see “Configuring Timing Parameters for CAN Blocks”.

References Detailed information on the eCAN module is in TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature
Number SPRU074A, available at the Texas Instruments Web site.

See Also C281x eCAN Receive

7-123

C281x GPIO Digital Input

Purpose General-purpose I/O pins for digital input

Library c281xdspchiplib in Target for TI C2000

Description This block configures the general-purpose I/O (GPIO) registers that
control the GPIO shared pins for digital input. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
I/O operation.

Dialog
Box

7-124

C281x GPIO Digital Input

IO Port
Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD,
GPIOPE, GPIOPF, or GPIOPG and select the I/O Port bits to enable
for digital input. (Note that there is no GPIOPC port on the
C281x.) If you select multiple bits, vector input is expected.
Cleared bits are available for peripheral functionality. Multiple
GPIO DI blocks cannot share the same I/O port.

Note The input function of the digital I/O and the input path
to the related peripheral are always enabled on the board. If
you configure a pin as digital I/O, the corresponding peripheral
function cannot be used.

The following tables show the shared pins.

GPIO A MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM1 GPIOA0

1 PWM2 GPIOA1

2 PWM3 GPIOA2

3 PWM4 GPIOA3

4 PWM5 GPIOA4

5 PWM6 GPIOA5

8 QEP1/CAP1 GPIOA8

7-125

C281x GPIO Digital Input

GPIO A MUX (Continued)

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

9 QEP2/CAP2 GPIOA9

10 CAP3 GPIOA10

GPIO B MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM7 GPIOB0

1 PWM8 GPIOB1

2 PWM9 GPIOB2

3 PWM10 GPIOB3

4 PWM11 GPIOB4

5 PWM12 GPIOB5

8 QEP3/CAP4 GPIOB8

9 QEP4/CAP5 GPIOB9

10 CAP6 GPIOB10

Sample time
Time interval, in seconds, between consecutive input from the
pins.

Data type
Data type of the data to obtain from the GPIO pins. The data is
read as 16-bit integer data and then cast to the selected data type.
Valid data types are auto, double, single, int8, uint8, int16,
uint16, int32, uint32 or boolean.

7-126

C281x GPIO Digital Input

Note The width of the vectorized data output by this block
is determined by the number of bits selected in the Block
Parameters dialog box.

See Also C281x GPIO Digital Output

7-127

C281x GPIO Digital Output

Purpose General-purpose I/O pins for digital output

Library c281xdspchiplib in Target for TI C2000

Description This block configures the general-purpose I/O (GPIO) registers that
control the GPIO shared pins for digital output. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
I/O operation.

Note Fixed-point inputs are not supported for this block.

7-128

C281x GPIO Digital Output

Dialog
Box

IO Port
Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD,
GPIOPE, GPIOPF, or GPIOPG and select the I/O Port bits to enable
for digital input. (Note that there is no GPIOPC port on the
C281x.) If you select multiple bits, vector input is expected.
Cleared bits are available for peripheral functionality. Note that
multiple GPIO DO blocks cannot share the same I/O port.

7-129

C281x GPIO Digital Output

Note The input function of the digital I/O and the input path
to the related peripheral are always enabled on the board. If
you configure a pin as digital I/O, the corresponding peripheral
function cannot be used.

The following tables show the shared pins.

GPIO A MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM1 GPIOA0

1 PWM2 GPIOA1

2 PWM3 GPIOA2

3 PWM4 GPIOA3

4 PWM5 GPIOA4

5 PWM6 GPIOA5

8 QEP1/CAP1 GPIOA8

9 QEP2/CAP2 GPIOA9

10 CAP3 GPIOA10

GPIO B MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM7 GPIOB0

1 PWM8 GPIOB1

7-130

C281x GPIO Digital Output

GPIO B MUX (Continued)

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

2 PWM9 GPIOB2

3 PWM10 GPIOB3

4 PWM11 GPIOB4

5 PWM12 GPIOB5

8 QEP3/CAP4 GPIOB8

9 QEP4/CAP5 GPIOB9

10 CAP6 GPIOB10

See Also C281x GPIO Digital Input

7-131

C281x Hardware Interrupt

Purpose Interrupt Service Routine to handle hardware interrupt on C281x
processor

Library c281xdspchiplib in Target for TI C2000

Description For many systems, an execution scheduling model based on a timer
interrupt is not sufficient to ensure a real-time response to external
events. The C281x Hardware Interrupt block addresses this problem
by allowing for the asynchronous processing of interrupts triggered by
events managed by other blocks in the C281x DSP Chip Support Library.

The C281x blocks that can generate an interrupt for asynchronous
processing are:

• C281x ADC

• C281x CAP

• C281x eCAN Receive

• C281x Timer

• C281x SCI Receive

• C281x SCI Transmit

• C281x Software Interrupt Trigger

• C281x SPI Receive

• C281x SPI Transmit

Only one Hardware Interrupt block can be used in a model. To handle
multiple interrupts, place a Demux block at the output of the Hardware
Interrupt block to direct function calls to the appropriate function-call
subsystems.

For details about this block, refer to C281x Hardware Interrupt block in
your Link for Code Composer Studio Development Tools documentation.

7-132

C281x Hardware Interrupt

Vectorized Output

This block outputs a function call. The size of the function call line
equals the number of interrupts the block is set to handle. The
block dialog box presents four parameters for each interrupt. These
parameters comprise a set of four vectors of equal length. Each
interrupt is represented by one element from each parameter (four
elements total), one from the same position in each of these vectors.

The following parameters describe each interrupt:

• CPU interrupt numbers

• PIE interrupt numbers

• Task priorities

• Preemption flags

Thus, one interrupt is described by a CPU interrupt number, a PIE
interrupt number, a task priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single
interrupt for a single peripheral or peripheral module. The following
table maps CPU and PIE interrupt numbers to these peripheral
interrupts. The row numbers are CPU values and the column numbers
are the PIE values.

Note The TINT0 (TIMER 0) interrupt is always reserved, and will
generate errors if used.

7-133

C281x Hardware Interrupt
C
2

8
1

x
P
er

ip
h
er

a
l
In

te
rr

u
p
t

V
ec

to
r

V
a
lu

es

1
2

3
4

5
6

7
8

1
P

D
P

IN
TA

(E
V-

A
)

P
D

P
IN

TB
(E

V-
B

)
R

es
er

ve
d

X
IN

T1
X

IN
T2

A
D

C
IN

T
(A

D
C

)
TI

N
T0

(T
IM

E
R

0)
W

A
K

E
IN

T
(L

P
M

/W
D

)

2
C

M
P

1I
N

T
(E

V-
A

)
C

M
P

2I
N

T
(E

V-
A

)
C

M
P

3I
N

T
(E

V-
A

)
T1

P
IN

T
(E

V-
A

)
T1

C
IN

T
(E

V-
A

)
T1

U
FI

N
T

(E
V-

A
)

T1
O

FI
N

T
(E

V-
A

)
R

es
er

ve
d

3
T2

P
IN

T
(E

V-
A

)
T2

C
IN

T
(E

V-
A

)
T2

U
FI

N
T

(E
V-

A
)

T2
O

FI
N

T
(E

V-
A

)
C

A
P

IN
T1

(E
V-

A
)

C
A

P
IN

T2
(E

V-
A

)
C

A
P

IN
T3

(E
V-

A
)

R
es

er
ve

d

4
C

M
P

4I
N

T
(E

V-
B

)
C

M
P

5I
N

T
(E

V-
B

)
C

M
P

6I
N

T
(E

V-
B

)
T3

P
IN

T
(E

V-
B

)
T3

C
IN

T
(E

V-
B

)
T3

U
FI

N
T

(E
V-

B
)

T3
O

FI
N

T
(E

V-
B

)
R

es
er

ve
d

5
T4

P
IN

T
(E

V-
B

)
T4

C
IN

T
(E

V-
B

)
T4

U
FI

N
T

(E
V-

B
)

T4
O

FI
N

T
(E

V-
B

)
C

A
P

IN
T4

(E
V-

B
)

C
A

P
IN

T5
(E

V-
B

)
C

A
P

IN
T6

(E
V-

B
)

R
es

er
ve

d

6
S

P
IR

X
IN

TA
(S

PI
)

S
P

IT
X

IN
TA

(S
P

I)
R

es
er

ve
d

R
es

er
ve

d
M

R
IN

T
(M

cB
S

P)
M

X
IN

T
(M

cB
S

P
)

R
es

er
ve

d
R

es
er

ve
d

7
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

8
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

9
S

C
IR

X
IN

TA
(S

C
I-A

)
S

C
IT

X
IN

TA
(S

C
I-A

)
S

C
IR

X
IN

TB
(S

C
I-B

)
SC

IT
X

IN
TB

(S
C

I-B
)

EC
A

N
0I

N
T

(C
A

N
)

E
C

A
N

1I
N

T
(C

A
N

)
R

es
er

ve
d

R
es

er
ve

d

10
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

11
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

12
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

7-134

C281x Hardware Interrupt

The task priority indicates the relative importance of tasks associated
with the asynchronous interrupts. If an interrupt triggers a
higher-priority task while a lower-priority task is running, the execution
of the lower-priority task is suspended while the higher-priority task is
executed. The lowest value represents the highest priority.The default
priority value of the base rate task is 40, so the priority value for each
asynchronously triggered task must be less than 40 for these tasks to
cause the suspension of the base rate task.

The preemption flag determines whether a given interrupt is
preemptable. Preemption overrides prioritization. A preemptable task
of higher priority can be preempted by a lower priority nonpreemptable
task.

Dialog
Box

CPU interrupt number(s)
Enter a vector of CPU interrupt numbers for the interrupts you
want to process asynchronously.

7-135

C281x Hardware Interrupt

See the table of C281x Peripheral Interrupt Vector Values on page
7-134 for a mapping of CPU interrupt number to interrupt names.

PIE interrupt number(s)
Enter a vector of PIE interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C281x Peripheral Interrupt Vector Values on page
7-134 for a mapping of CPU interrupt number to interrupt names.

Simulink task priority(s)
Enter a vector of task priorities for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page
7-133 for an explanation of task priorities.

Preemption flag(s)
Enter a vector of preemption flags for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page
7-133 for an explanation of preemption flags.

Enable simulation input
Select this check box if you want to be able to test asynchronous
interrupt processing in the context of your Simulink model.

Note Using this check box is the only way you can test
asynchronous interrupt processing behavior in Simulink.

References For detailed information interrupt processing, refer to TMS320x281x
DSP System Control and Interrupts Reference Guide, SPRU078C,
available at the Texas Instruments Web site.

See Also C281x SW Int Trigger, C281x Timer, Idle Task

7-136

C281x PWM

Purpose Pulse width modulators (PWMs)

Library c281xdspchiplib in Target for TI C2000

Description F2812 DSPs include a suite of pulse width modulators (PWMs) used
to generate various signals. This block provides options to set the A
or B module Event Managers to generate the waveforms you require.
The twelve PWMs are configured in six pairs, with three pairs in each
module.

Note All inputs to the C281x PWM block must be scalar values.

7-137

C281x PWM

Dialog
Box

Timer Pane

Module
Specifies which target PWM pairs to use:

• A — Displays the PWMs in module A (PWM1/PWM2,
PWM3/PWM4, and PWM5/PWM6).

• B — Displays the PWMs in module B (PWM7/PWM8,
PWM9/PWM10, and PWM11/PWM12).

7-138

C281x PWM

Note PWMs in module A use Event Manager A, Timer 1, and
PWMs in module B use Event Manager B, Timer 3.

Waveform period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value in Waveform period or
select Input port to use a value from the input port.

Waveform period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in the Waveform period units.

Note The term clock cycles refers to the high-speed peripheral
clock on the F2812 chip. This clock is 75 MHz by default because
the high-speed peripheral clock prescaler is set to 2 (150 MHz/2).

Waveform type
Type of waveform to be generated by the PWM pair. The F2812
PWMs can generate two types of waveforms: Asymmetric and
Symmetric. The following illustration shows the difference
between the two types of waveforms.

7-139

C281x PWM

Waveform period units
Units in which to measure the waveform period. Options are
Clock cycles, which refer to the high-speed peripheral clock on
the F2812 chip (75 MHz), or Seconds. Note that changing these
units changes the Waveform period value and the Duty cycle
value and Duty cycle units selection.

7-140

C281x PWM

Outputs Pane

Enable PWM#/PWM#
Check to activate the PWM pair. PWM1/PWM2 are activated
via the Output 1 pane, PWM3/PWM4 are on Output 2, and
PWM5/PWM6 are on Output 3.

Duty cycle source
Source from which the duty cycle for the specific PWM pair is
obtained. Select Specify via dialog to enter the value in Duty
cycle or select Input port to use a value from the input port.

7-141

C281x PWM

Duty cycle
Ratio of the PWM waveform pulse duration to the PWM waveform
period expressed in Duty cycle units.

Duty cycle units
Units for the duty cycle. Valid choices are Clock cycles and
Percentages. Note that changing these units changes the Duty
cycle value, and the Waveform period value and Waveform
period units selection.

Note Using percentages may cause some additional computation
time in generated code. This may or may not be noticeable in
your application.

7-142

C281x PWM

Logic Pane

Control logic source
Source from which the control logic is obtained for all PWMs.
Select Specify via dialog to enter the values in the PWM#
control logic fields or select Input port to use values from the
input port.

PWM# control logic
Control logic trigger for the PWM. Forced high causes the pulse
value to be high. Active high causes the pulse value to go from
low to high and Active low causes the pulse value to go from
high to low. Forced low causes the pulse value to be low.

7-143

C281x PWM

Deadband Pane

Use deadband for PWM#/PWM#
Enables a deadband area of no signal overlap at the beginning
of particular PWM pair signals. The following figure shows the
deadband area.

7-144

C281x PWM

Deadband prescaler
Number of clock cycles, which, when multiplied by the Deadband
period, determines the size of the deadband. Selectable values
are 1, 2, 4, 8, 16, and 32.

Deadband period source
Source from which the deadband period is obtained. Select
Specify via dialog to enter the values in the Deadband
period field or select Input port to use a value, in clock cycles,
from the input port.

Deadband period
Value that, when multiplied by the Deadband prescaler,
determines the size of the deadband. Selectable values are from
1 to 15.

7-145

C281x PWM

ADC Control Pane

ADC start event
Controls whether this PWM and ADC associated with the same
EV module are synchronized. Select None for no synchronization
or select an interrupt to generate the source start-of-conversion
(SOC) signal for the associated ADC.

• None — The ADC and PWM are not synchronized. The EV
does not generate an SOC signal and the ADC is triggered by
software (that is, the A/D conversion occurs when the ADC
block is executed in the software).

7-146

C281x PWM

• Underflow interrupt — The EV generates an SOC signal for
the ADC associated with the same EV module when the board’s
General Purpose (GP) timer counter reaches a hexadecimal
value of FFFF.

• Period interrupt — The EV generates an SOC signal for the
ADC associated with the same EV module when the value in GP
timer matches the value in the period register. The value set in
Waveform period above determines the value in the register.

Note If you select Period interrupt and specify a sampling
time less than the specified (Waveform period)/(Event timer
clock speed), zero-order hold interpolation will occur. (For
example, if you enter 64000 as the waveform period, the period
for the timer is 64000/75 MHz = 8.5333e-004. If you enter a
Sample time in the C281x ADC dialog box that is less than
this result, it will cause zero-order hold interpolation.)

• Compare interrupt — The EV generates an SOC signal for the
ADC associated with the same EV module when the value in the
GP timer matches the value in the compare register. The value
set in Duty cycle above determines the value in the register.

See Also C281x ADC

7-147

C281x QEP

Purpose Quadrature encoder pulse circuit

Library c281xdspchiplib in Target for TI C2000

Description Each F2812 Event Manager has three capture units, which can log
transitions on its capture unit pins. Event Manager A (EVA) uses
capture units 1, 2, and 3. Event Manager B (EVB) uses capture units
4, 5, and 6.

The quadrature encoder pulse (QEP) circuit decodes and counts
quadrature encoded input pulses on these capture unit pins. QEP
pulses are two sequences of pulses with varying frequency and a fixed
phase shift of 90 degrees (or one-quarter of a period). Both edges of
the QEP pulses are counted so the frequency of the QEP clock is four
times the input sequence frequency.

The QEP, in combination with an optical encoder, is particularly useful
for obtaining speed and position information from a rotating machine.
Logic in the QEP circuit determines the direction of rotation by which
sequence is leading. For module A, if the QEP1 sequence leads, the
general-purpose (GP) Timer counts up and if the QEP2 sequence leads,
the timer counts down. The pulse count and frequency determine the
angular position and speed.

7-148

C281x QEP

Dialog
Box

Module
Specifies which QEP pins to use:

• A — Uses QEP1 and QEP2 pins.

• B — Uses QEP3 and QEP4 pins.

Counting mode
Specifies how to count the QEP pulses:

• Counter — Count the pulses based on the board’s GP Timer 2
(or GP Timer 4 for EVB).

• RPM — Count the machine’s revolutions per minute.

Positive rotation
Defines whether to use Clockwise or Counterclockwise as the
direction to use as positive rotation. This field appears only if
you select RPM above.

7-149

C281x QEP

Encoder resolution
Number of QEP pulses per revolution. This field appears only
if you select RPM above.

Initial count
Initial value for the counter. The default is 0.

Sample time
Time interval, in seconds, between consecutive reads from the
QEP pins.

Data type
Data type of the QEP pin data. The data is read as 16-bit data
and then cast to the selected data type. Valid data types are auto,
double, single, int8, uint8, int16, uint16, int32, uint32 or
boolean.

7-150

C281x SCI Receive

Purpose Receive data on target via serial communications interface (SCI) from
host

Library c281xdspchiplib in Target for TI C2000

Description The C281x SCI Receive block supports asynchronous serial digital
communications between the target and other asynchronous peripherals
in nonreturn-to-zero (NRZ) format. This block configures the C281x
DSP target to receive scalar or vector data from the COM port via the
C28x target’s COM port.

Note For any given model, you can have only one C281x SCI Receive
block per module. There are two modules, A and B, which can be
configured through the F2812 eZdsp target preferences block.

Many SCI-specific settings are in the DSPBoard section of the F2812
eZdsp target preferences block. You should verify that these settings
are correct for your application.

7-151

C281x SCI Receive

Dialog
Box

SCI module
SCI module to be used for communications.

7-152

C281x SCI Receive

Additional package header
This field specifies the data located at the front of the received
data package, which is not part of the data being received, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not received nor are they included
in the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Transmit block.

Additional package terminator
This field specifies the data located at the end of the received
data package, which is not part of the data being received,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not received nor are they
included in the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Transmit block.

Data type
Data type of the output data. Available options are single, int8,
uint8, int16, uint16, int32, or uint32.

Data length
How many of Data type the block will receive (not bytes).
Anything more than 1 is a vector. The data length is inherited

7-153

C281x SCI Receive

from the input (the data length originally input to the host-side
SCI Transmit block).

Initial output
Default value from the c281x SCI Receive block. This value is
used, for example, if a connection time-out occurs and the When
connection timeout field is set to “Output the last received
value”, but nothing yet has been received.

When connection timeout
Specifies what to output if a connection time-out occurs. If
“Output the last received value” is selected, the last received value
is what is output, unless none has been received yet, in which case
the Initial output is considered the last received value.

If “Output customized value” is selected, a field for specifying a
custom value is added to the dialog box (as shown in the following
figure).

7-154

C281x SCI Receive

7-155

C281x SCI Receive

Sample time
Sample time, Ts, for the block’s input sampling. To execute this
block asynchronously, set Sample Time to -1, and refer to
“Asynchronous Interrupt Processing” on page 1-14 for a discussion
of block placement and other necessary settings.

Output receiving status
When this field is checked, the c281x SCI Receive block adds
another output port for the transaction status, and appears as
shown in the following figure.

Error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was waiting to receive
data

• 2: There is an in the received data (checksum error)

• 3: SCI parity-error flag — Occurs when a character is received
with a mismatch between the number of 1s and its parity bit

• 4: SCI framing-error flag — Occurs when an expected stop bit
is not found

Enable receive FIFO interrupt
If this option is selected, an interrupt is posted when FIFO is full,
allowing the subsystem to take some sort of action (for example,
read data as soon as it is received). If this option is cleared, the
block stays in polling mode. If the block is in polling mode and not
blocking, it checks the FIFO to see if there is data to read. If data
is present, it reads and outputs. If no data is present, it continues.
If the block is in polling mode and blocking, it waits until data is
available to read (when data length is reached).

7-156

C281x SCI Receive

Receive FIFO interrupt level
This parameter is enabled when the Enable receive FIFO
interrupt option is selected. Select an interrupt level from 0 to
16. The default level is 0.

References Detailed information on the SCI module is in TMS320x281x, 280x DSP
Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also C281x SCI Transmit, C281x Hardware Interrupt

7-157

C281x SCI Transmit

Purpose Transmit data from target via serial communications interface (SCI)
to host

Library c281xdspchiplib in Target for TI C2000

Description The C281x SCI Transmit block transmits scalar or vector data in int8
or uint8 format from the C281x target’s COM ports in nonreturn-to-zero
(NRZ) format. You can specify how many of the six target COM ports to
use. The sampling rate and data type are inherited from the input port.
The data type of the input port must be one of the following: single,
int8, uint8, int16, uint16, int32, or uint32. If no data type is specified,
the default data type is uint8.

Note For any given model, you can have only one C281x SCI Transmit
block per module. There are two modules, A and B, which can be
configured through the F2812 eZdsp target preferences block.

Many SCI-specific settings are in the DSPBoard section of the F2812
eZdsp target preferences block. You should verify that these settings
are correct for your application.

Fixed-point inputs are not supported for this block.

7-158

C281x SCI Transmit

Dialog
Box

SCI module
SCI module to be used for communications.

Additional package header
This field specifies the data located at the front of the sent data
package, which is not part of the data being transmitted, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not sent nor are they included in
the total byte count.

7-159

C281x SCI Transmit

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Receive block.

Additional package terminator
This field specifies the data located at the end of the sent
data package, which is not part of the data being transmitted,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not sent nor are they
included in the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Receive block.

Enable transmit FIFO interrupt
If this option is selected, an interrupt is posted when FIFO is full,
allowing the subsystem to take some sort of action.

References Detailed information on the SCI module is in TMS320x281x, 280x DSP
Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also C281x SCI Receive, C281x Hardware Interrupt

7-160

C281x SW Int Trigger

Purpose Generate software triggered nonmaskable interrupt

Library c281xdspchiplib in Target for TI C2000

Description When you add this block to a model, the block polls the input port for
the input value. When the input value is greater than the value in
Trigger software interrupt when input value is greater than, the
block posts the interrupt to a Hardware Interrupt block in the model.

To use this block, add a Hardware Interrupt block to your model
to process the software triggered interrupt from this block into an
interrupt service routine on the processor. Set the interrupt number
in the Hardware Interrupt block to the value you set here in CPU
interrupt number.

The CPU and PIE interrupt numbers together specify a single interrupt
for a single peripheral or peripheral module. The following table maps
CPU and PIE interrupt numbers to these peripheral interrupts. The row
numbers are CPU values and the column numbers are the PIE values.

Note Fixed-point inputs are not supported for this block.

7-161

C281x SW Int Trigger
C
2

8
1

x
P
er

ip
h
er

a
l
In

te
rr

u
p
t

V
ec

to
r

V
a
lu

es

1
2

3
4

5
6

7
8

1
P

D
P

IN
TA

(E
V-

A
)

P
D

P
IN

TB
(E

V-
B

)
R

es
er

ve
d

X
IN

T1
X

IN
T2

A
D

C
IN

T
(A

D
C

)
TI

N
T0

(T
IM

E
R

0)
W

A
K

E
IN

T
(L

P
M

/W
D

)

2
C

M
P

1I
N

T
(E

V-
A

)
C

M
P

2I
N

T
(E

V-
A

)
C

M
P

3I
N

T
(E

V-
A

)
T1

P
IN

T
(E

V-
A

)
T1

C
IN

T
(E

V-
A

)
T1

U
FI

N
T

(E
V-

A
)

T1
O

FI
N

T
(E

V-
A

)
R

es
er

ve
d

3
T2

P
IN

T
(E

V-
A

)
T2

C
IN

T
(E

V-
A

)
T2

U
FI

N
T

(E
V-

A
)

T2
O

FI
N

T
(E

V-
A

)
C

A
P

IN
T1

(E
V-

A
)

C
A

P
IN

T2
(E

V-
A

)
C

A
P

IN
T3

(E
V-

A
)

R
es

er
ve

d

4
C

M
P

4I
N

T
(E

V-
B

)
C

M
P

5I
N

T
(E

V-
B

)
C

M
P

6I
N

T
(E

V-
B

)
T3

P
IN

T
(E

V-
B

)
T3

C
IN

T
(E

V-
B

)
T3

U
FI

N
T

(E
V-

B
)

T3
O

FI
N

T
(E

V-
B

)
R

es
er

ve
d

5
T4

P
IN

T
(E

V-
B

)
T4

C
IN

T
(E

V-
B

)
T4

U
FI

N
T

(E
V-

B
)

T4
O

FI
N

T
(E

V-
B

)
C

A
P

IN
T4

(E
V-

B
)

C
A

P
IN

T5
(E

V-
B

)
C

A
P

IN
T6

(E
V-

B
)

R
es

er
ve

d

6
S

P
IR

X
IN

TA
(S

PI
)

S
P

IT
X

IN
TA

(S
P

I)
R

es
er

ve
d

R
es

er
ve

d
M

R
IN

T
(M

cB
S

P)
M

X
IN

T
(M

cB
S

P
)

R
es

er
ve

d
R

es
er

ve
d

7
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

8
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

9
S

C
IR

X
IN

TA
(S

C
I-A

)
S

C
IT

X
IN

TA
(S

C
I-A

)
S

C
IR

X
IN

TB
(S

C
I-B

)
SC

IT
X

IN
TB

(S
C

I-B
)

EC
A

N
0I

N
T

(C
A

N
)

E
C

A
N

1I
N

T
(C

A
N

)
R

es
er

ve
d

R
es

er
ve

d

10
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

11
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

12
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

7-162

C281x SW Int Trigger

Dialog
Box

CPU interrupt number
Specify the interrupt the block responds to. Interrupt numbers
are integers ranging from 1 to 12.

PIE interrupt number
Enter an integer value from 1 to 8 to set the Peripheral Interrupt
Expansion (PIE) interrupt number.

Trigger software interrupt when input value is greater than:
Sets the value above which the block posts an interrupt. Enter the
value to set the level that indicates that the interrupt is asserted
by a requesting routine.

7-163

C281x SW Int Trigger

References For detailed information about interrupt processing, refer to
TMS320x281x DSP System Control and Interrupts Reference Guide,
SPRU078C, available at the Texas Instruments Web site.

See Also C281x Hardware Interrupt

7-164

C281x SPI Receive

Purpose Receive data via serial peripheral interface on target

Library c281xdspchiplib in Target for TI C2000

Description The C281x SPI Receive supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode.

In master mode, the SPISIMO pin transmits data and the SPISOMI pin
receives data. When master mode is selected, the SPI initiates the data
transfer by sending a serial clock signal (SPICLK), which is used for the
entire serial communications link. Data transfers are synchronized to
this SPICLK, which enables both master and slave to send and receive
data simultaneously. The maximum for the clock is one quarter of the
DSP controller’s clock frequency.

For any given model, you can have only one C281x SPI Receive block
per module. There are two modules, A and B, which can be configured
through the F2812 eZdsp target preferences block.

Note Many SPI-specific settings are in the DSPBoard section of the
F2812 eZdsp target preferences block. You should verify that these
settings are correct for your application.

7-165

C281x SPI Receive

Dialog
Box

Data length
Specifies how many uint16s are expected to be received. Select
1 through 16.

Enable blocking mode
If this option is selected, system waits until data is received before
continuing processing.

Output receive error status
When this field is checked, the c281x SPI Receive block adds
another output port for the transaction status, and appears as
shown in the following figure.

7-166

C281x SPI Receive

Error status may be one of the following values:

• 0: No errors

• 1: Data loss occurred (Overrun: when FIFO disabled, Overflow:
when FIFO enabled)

• 2: Data not ready, a time-out occurred while the block was
waiting to receive data

Post interrupt when data is received
Check this check box to post an asynchronous interrupt when
data is received.

Sample time
Sample time, Ts, for the block’s input sampling. To execute
this block asynchronously, set Sample Time to -1, check the
Post interrupt when message is received box, and refer to
“Asynchronous Interrupt Processing” on page 1-14 for a discussion
of block placement and other necessary settings.

See Also C281x SPI Transmit, C281x Hardware Interrupt

7-167

C281x SPI Transmit

Purpose Transmit data via serial peripheral interface (SPI) to host

Library c281xdspchiplib in Target for TI C2000

Description The C281x SPI Transmit supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode. In master mode, the SPISIMO pin transmits data
and the SPISOMI pin receives data. When master mode is selected,
the SPI initiates the data transfer by sending a serial clock signal
(SPICLK), which is used for the entire serial communications link. Data
transfers are synchronized to this SPICLK, which enables both master
and slave to send and receive data simultaneously. The maximum for
the clock is one quarter of the DSP controller’s clock frequency.

The sampling rate is inherited from the input port. The supported data
type is uint16.

Note For any given model, you can have only one C281x SPI Transmit
block per module. There are two modules, A and B, which can be
configured through the F2812 eZdsp target preferences block.

Many SPI-specific settings are in the DSPBoard section of the F2812
eZdsp target preferences block. You should verify that these settings
are correct for your application.

7-168

C281x SPI Transmit

Dialog
Box

Output transmit error status
When this field is checked, the c281x SPI Transmit block adds
another output port for the transaction status, and appears as
shown in the following figure.

Error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was transmitting data

• 2: There is an error in the transmitted data (for example,
header or terminator don’t match, length of data expected is too
big or too small)

7-169

C281x SPI Transmit

Enable blocking mode
If this option is selected, system waits until data is sent before
continuing processing.

Post interrupt when data is transmitted
Select this check box to post an asynchronous interrupt when
data is transmitted.

See Also C281x SPI Receive

7-170

C281x Timer

Purpose Configure up to four general-purpose, stand alone Event Manager
timers

Library c281xdspchiplib in Target for TI C2000

Description The C281x event-manager (EV) modules include general-purpose (GP)
timers. There are two general-purpose (GP) timers in each module.
These timers can be used as independent time bases in various
applications.

The C281x Timer block lets you set the periodicity of the general-purpose
timers, and configure them to post interrupts under specified conditions.

Dialog
Box

7-171

C281x Timer

Module
Timer no

Select which of four possible timers to configure. Setting Module
to A lets you select Timer 1 or Timer 2 in Timer no. Setting
Module to B lets you select Timer 3 or Timer 4 in Timer no.

Timer period
Set the length of the timer period in clock cycles. Enter a value
from 0 to 65535. The default is 10000.

You can easily calculate how many clock cycles to set for the timer
period if you know the length of a clock cycle. The calculation for
the length of one clock cycle is as follows:

Sysclk MHz HISPCLK InputClock escaler() (/) Pr (/)150 1 2 1 128→ →

where the System clock frequency of 150MHz is divided by
the high speed clock prescaler of 2, and then divided by the
timer control input clock prescaler, which is 128. The resulting
frequency is .586MHz. Thus, one clock cycle is 1/.586MHz, which
is 1.706µs.

Compare value
Enter a constant value to be used for comparison to the running
timer value for the purpose of generating interrupts. Enter a value
from 0 to 65535. The default is 5000. Note that interrupts will be
generated only if Post interrupt on compare match is selected.

Post interrupt on period match
Select this check box to generate an interrupt whenever the value
of the timer reaches its maximum value as specified in Timer
period.

Post interrupt on underflow
Select this check box to generate an interrupt whenever the value
of the timer cycles back to 0.

Post interrupt on overflow
Select this check box to generate an interrupt whenever the value
of the timer reaches its maximum possible value of 65535. Note

7-172

C281x Timer

that unless Timer period is set to 65535, this interrupt will
never be generated even if this check box is selected.

Post interrupt on compare match
Select this check box to generate an interrupt whenever the value
of the timer equals Compare value.

See Also C281x Hardware Interrupt, Idle Task

7-173

Clarke Transformation

Purpose Convert balanced three-phase quantities to balanced two-phase
quadrature quantities

Library c28xdmclib in Target for TI C2000

Description This block converts balanced three-phase quantities into balanced
two-phase quadrature quantities. The transformation implements
these equations

Id Ia

Iq Ib Ia

=

= +() /2 3

and is illustrated in the following figure.

The inputs to this block are the phase a (As) and phase b (Bs)
components of the balanced three-phase quantities and the outputs
are the direct axis (Alpha) component and the quadrature axis (Beta)
of the transformed signal.

The instantaneous outputs are defined by the following equations and
are shown in the following figure:

7-174

Clarke Transformation

ia I t
ib I t
ic I t
id I t

=
= +
= −
=

* sin()
* sin(/)
* sin(/)
* sin()

ω
ω π
ω π
ω

2 3
2 3

iiq I t= +* sin(/)ω π 2

The variables used in the preceding equations and figures correspond to
the variables on the block as shown in the following table:

Equation Variables Block Variables

Inputs ia As

ib Bs

Outputs id Alpha

iq Beta

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

7-175

Clarke Transformation

Dialog
Box

References Detailed information on the DMC library is in C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

See Also Inverse Park Transformation, Park Transformation, PID Controller,
Space Vector Generator, Speed Measurement

7-176

Custom Board

Purpose Target preferences for custom C28xx board

Library c2000tgtpreflib in Target for TI C2000

Description Options on the block dialog box let you set features of code generation
for your custom C280x or C281x processor-based target. Adding this
block to your Simulink model provides access to the processor hardware
settings you need to configure when you generate a project from a
Simulink model or you generate code from Real-Time Workshop to run
on your board.

Any model that you use to generate a project or that you target to
custom hardware should include this block or the Target Preferences
block from Link for Code Composer Studio Development Tools.
Simulink or Real-Time Workshop return an error message if a target
preferences block is not present in your model when you try to generate
projects or code.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model. Simulink returns an error
when your model does not include a target preferences block or has
more than one.

The processor and target options you specify on this block are:

• Processor and board information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler and custom
sections

• Operating parameters for peripherals on C280x processors

Setting the options included in this dialog box results in identifying your
target to Real-Time Workshop, Target for TI C2000, and Simulink, and

7-177

Custom Board

configuring the memory map for your target. Both steps are essential for
targeting any C28xx-based board that is custom or explicitly supported.

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the
block dialog, the block attempts to connect to your target. It cannot
make the connection when the block is in the library and returns an
error message. Also, if you do not have Code Composer Studio installed,
you cannot open this block.

For details about the options for the Custom C28xx Board target
preferences, refer to the Target Preferences block in Link for Code
Composer Studio Development Tools.

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from
a selected subsystem in a model. To generate code for a C28xx
processor-based target from a subsystem, the subsystem model must
include a Target Preferences block.

See Also C280x ADC, C280x eCAN Receive, C280x eCAN Transmit, C280x
ePWM,C281x ADC, C281x eCAN Receive, C281x eCAN Transmit,
C281x PWM

7-178

Division IQN

Purpose Divide IQ numbers

Library tiiqmathlib in Target for TI C2000

Description This block divides two numbers that use the same Q format, using the
Newton-Raphson technique. The resulting quotient uses the same Q
format at the inputs.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Float to IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-179

F2808 eZdsp

Purpose F2808 eZdsp DSK target preferences

Library c2000tgtpreflib in Target for TI C2000

Description Options on the block dialog box let you set features of code generation
for your F2808 eZdsp target. Adding this block to your Simulink model
provides access to the processor hardware settings you need to configure
when you generate a project from a Simulink model or you generate
code from Real-Time Workshop to run on your board.

Any model that you use to generate a project or that you target
to F2808 eZdsp hardware should include this block or the Target
Preferences block from Link for Code Composer Studio Development
Tools. Simulink or Real-Time Workshop return an error message if a
target preferences block is not present in your model when you try to
generate projects or code.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model. Simulink returns an error
when your model does not include a target preferences block or has
more than one.

The processor and target options you specify on this block are:

• Processor and board information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler and custom
sections

• Operating parameters for peripherals on F2808 eZdsp hardware

Setting the options included in this dialog box results in identifying
your target to Real-Time Workshop, Target for TI C2000, and Simulink,

7-180

F2808 eZdsp

and configuring the memory map for your target. Both steps are
essential for targeting any F2808 eZdsp.

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the
block dialog, the block attempts to connect to your target. It cannot
make the connection when the block is in the library and returns an
error message. Also, if you do not have Code Composer Studio installed,
you cannot open this block.

For details about the options for the F2808 eZdsp target preferences,
refer to the Target Preferences block in Link for Code Composer Studio
Development Tools.

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a
selected subsystem in a model. To generate code for a F2808 eZdsp from
a subsystem, the subsystem model must include a Target Preferences
block.

See Also C280x ADC, C280x eCAN Receive, C280x eCAN Transmit, C280x
ePWM, C280x eQEP, C280x Hardware Interrupt, Idle Task

7-181

F2808 eZdsp Stand alone code using Flash Memory

Library c2000tgtpreflib in Target for TI C2000

Description This block saves the generated code to nonvolatile flash memory for
reuse. Saving the code in Flash, directly on the chip, allows the chip
to be unplugged and reused at a different time. Options on the block
dialog box let you set features of code generation for your F2808 eZdsp
target. Adding this block to your Simulink model provides access to the
processor hardware settings you need to configure when you generate
a project from a Simulink model or you generate code from Real-Time
Workshop to run on your board.

Any model that you use to generate a project or that you target
to F2808 eZdsp hardware should include this block or the Target
Preferences block from Link for Code Composer Studio Development
Tools. Simulink or Real-Time Workshop return an error message if a
target preferences block is not present in your model when you try to
generate projects or code.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model. Simulink returns an error
when your model does not include a target preferences block or has
more than one.

The processor and target options you specify on this block are:

• Processor and board information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler and custom
sections

• Operating parameters for peripherals on F2808 eZdsp hardware

Setting the options included in this dialog box results in identifying
your target to Real-Time Workshop, Target for TI C2000, and Simulink,

7-182

F2808 eZdsp Stand alone code using Flash Memory

and configuring the memory map for your target. Both steps are
essential for targeting any F2808 eZdsp.

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the
block dialog, the block attempts to connect to your target. It cannot
make the connection when the block is in the library and returns an
error message. Also, if you do not have Code Composer Studio installed,
you cannot open this block.

For details about the options for the F2808 eZdsp target preferences,
refer to the Target Preferences block in Link for Code Composer Studio
Development Tools.

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a
selected subsystem in a model. To generate code for a F2808 eZdsp from
a subsystem, the subsystem model must include a Target Preferences
block.

See Also C280x ADC, C280x eCAN Receive, C280x eCAN Transmit, C280x
ePWM, C280x eQEP, C280x Hardware Interrupt, Idle Task

7-183

F2812 eZdsp

Purpose F2812 eZdsp DSK target preferences

Library c2000tgtpreflib in Target for TI C2000

Description Options on the block dialog box let you set features of code generation
for your F2812 eZdsp target. Adding this block to your Simulink model
provides access to the processor hardware settings you need to configure
when you generate a project from a Simulink model or you generate
code from Real-Time Workshop to run on your board.

Any model that you use to generate a project or that you target
to F2812 eZdsp hardware should include this block or the Target
Preferences block from Link for Code Composer Studio Development
Tools. Simulink or Real-Time Workshop return an error message if a
target preferences block is not present in your model when you try to
generate projects or code.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model. Simulink returns an error
when your model does not include a target preferences block or has
more than one.

The processor and target options you specify on this block are:

• Processor and board information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler and custom
sections

• Operating parameters for peripherals on F2812 eZdsp hardware

Setting the options included in this dialog box results in identifying
your target to Real-Time Workshop, Target for TI C2000, and Simulink,

7-184

F2812 eZdsp

and configuring the memory map for your target. Both steps are
essential for targeting any F2812 eZdsp.

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the
block dialog, the block attempts to connect to your target. It cannot
make the connection when the block is in the library and returns an
error message. Also, if you do not have Code Composer Studio installed,
you cannot open this block.

For details about the options for the F2812 eZdsp target preferences,
refer to the Target Preferences block in Link for Code Composer Studio
Development Tools.

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a
selected subsystem in a model. To generate code for a F2812 eZdsp from
a subsystem, the subsystem model must include a Target Preferences
block.

For details about the options for the F2812 eZdsp target preferences,
refer to the Target Preferences block in Link for Code Composer Studio
Development Tools.

See Also C281x ADC, C281x eCAN Receive, C281x eCAN Transmit, C281x PWM

7-185

F2812 eZdsp Stand alone code using Flash Memory

Library c2000tgtpreflib in Target for TI C2000

Description This block saves the generated code to nonvolatile flash memory for
reuse. Saving the code in Flash, directly on the chip, allows the chip
to be unplugged and reused at a different time. Options on the block
dialog box let you set features of code generation for your F2812 eZdsp
target. Adding this block to your Simulink model provides access to the
processor hardware settings you need to configure when you generate
a project from a Simulink model or you generate code from Real-Time
Workshop to run on your board.

Any model that you use to generate a project or that you target
to F2812 eZdsp hardware should include this block or the Target
Preferences block from Link for Code Composer Studio Development
Tools. Simulink or Real-Time Workshop return an error message if a
target preferences block is not present in your model when you try to
generate projects or code.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model. Simulink returns an error
when your model does not include a target preferences block or has
more than one.

The processor and target options you specify on this block are:

• Processor and board information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler and custom
sections

• Operating parameters for peripherals on F2812 eZdsp hardware

Setting the options included in this dialog box results in identifying
your target to Real-Time Workshop, Target for TI C2000, and Simulink,

7-186

F2812 eZdsp Stand alone code using Flash Memory

and configuring the memory map for your target. Both steps are
essential for targeting any F2812 eZdsp.

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the
block dialog, the block attempts to connect to your target. It cannot
make the connection when the block is in the library and returns an
error message. Also, if you do not have Code Composer Studio installed,
you cannot open this block.

For details about the options for the F2812 eZdsp target preferences,
refer to the Target Preferences block in Link for Code Composer Studio
Development Tools.

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a
selected subsystem in a model. To generate code for a F2812 eZdsp from
a subsystem, the subsystem model must include a Target Preferences
block.

For details about the options for the F2812 eZdsp target preferences,
refer to the Target Preferences block in Link for Code Composer Studio
Development Tools.

See Also C281x ADC, C281x eCAN Receive, C281x eCAN Transmit, C281x PWM

7-187

Float to IQN

Purpose Convert floating-point number to IQ number

Library tiiqmathlib in Target for TI C2000

Description This block converts a floating-point number to an IQ number. The Q
value of the output is specified in the dialog.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Q value
Q value from 1 to 30 that specifies the precision of the output

See Also Absolute IQN, Arctangent IQN, Division IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-188

Fractional part IQN

Purpose Fractional part of IQ number

Library tiiqmathlib in Target for TI C2000

Description This block returns the fractional portion of an IQ number. The returned
value is an IQ number in the same IQ format.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to
Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude
IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-189

Fractional part IQN x int32

Purpose Fractional part of result of multiplying IQ number and long integer

Library tiiqmathlib in Target for TI C2000

Description This block multiplies an IQ input and a long integer input and returns
the fractional portion of the resulting IQ number.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

7-190

From Memory

Purpose Retrieve data from target memory

Library c280xspchiplib or c281xspchiplib in Target for TI C2000

Description This block retrieves data of the specified data type from a particular
memory address on the target.

Dialog
Box

Memory address
Address of the target memory location, in hexadecimal, from
which to read data.

Note To ensure the correct operation of this block, you must
specify exactly the desired memory location. Refer to your Linker
CMD file for available memory locations.

7-191

From Memory

Data type
Data type of the data to obtain from the above memory address.
The data is read as 16-bit data and then cast to the selected data
type. Valid data types are double, single, int8, uint8, int16,
uint16, int32, and uint32.

Sample time
Time interval, in seconds, between consecutive reads from the
specified memory location.

Samples per frame
Number of elements of the specified data type to be read from the
memory region starting at the given address.

See Also To Memory

7-192

From RTDX

Purpose Add RTDX input channel

Library rtdxBlocks in Target for TI C2000

Description When you generate code from Simulink in Real-Time Workshop with
a From RTDX block in your model, code generation inserts the C
commands to create an RTDX input channel on the target. Input
channels transfer data from the host to the target.

The generated code contains this command:

RTDX_enableInput(&channelname)

where channelname is the name you enter in Channel name.

Note From RTDX blocks work only in code generation and when your
model runs on your target. In simulations, this block does not perform
any operations, except generating an output matching your specified
initial conditions.

To use RTDX blocks in your model, you must do the following:

1 Add one or more To RTDX or From RTDX blocks to your model.

2 Download and run your model on your target.

3 Enable the RTDX channels from MATLAB or use Enable RTDX
channel on start-up on the block dialog.

4 Use the readmsg and writemsg functions in MATLAB to send and
retrieve data from the target over RTDX.

7-193

From RTDX

Dialog
Box

Channel name
Name of the input channel to be created by the generated code.
The channel name must meet C syntax requirements for length
and character content.

Enable blocking mode
Blocking mode instructs the target processor to pause processing
until new data is available from the From RTDX block. If you
enable blocking and new data is not available when the processor
needs it, your process stops. In nonblocking mode, the processor
uses old data from the block when new data is not available.

7-194

From RTDX

Nonblocking operation is the default and is recommended for
most operations.

Initial conditions
Data the processor reads from RTDX for the first read. If blocking
mode is not enabled, you must have an entry for this option.
Leaving the option blank causes an error in Real-Time Workshop.
Valid values are 0, null ([]), or a scalar. The default value is 0.

0 or null ([]) outputs a zero to the processor. A scalar generates
one output sample with the value of the scalar. If Output
dimensions specifies an array, every element in the array has
the same scalar or zero value. A null array ([]) outputs a zero
for every sample.

Sample time
Time between samples of the signal. The default is 1 second. This
produces a sample rate of one sample per second (1/Sample time).

Output dimensions
Dimensions of a matrix for the output signal from the block. The
first value is the number of rows and the second is the number
of columns. For example, the default setting [1 64] represents
a 1-by-64 matrix of output values. Enter a 1-by-2 vector for the
dimensions.

Frame-based
Sets a flag at the block output that directs downstream blocks
to use frame-based processing on the data from this block. In
frame-based processing, the samples in a frame are processed
simultaneously. In sample-based processing, samples are
processed one at a time. Frame-based processing can increase
the speed of your application running on your target. Note that
throughput remains the same in samples per second processed.
Frame-based operation is the default.

Data type
Type of data coming from the block. Select one of the following
types:

7-195

From RTDX

• Double — Double-precision floating-point values. This is the
default. Values range from -1 to 1.

• Single — Single-precision floating-point values ranging from
-1 to 1.

• Uint8 — 8-bit unsigned integers. Output values range from 0
to 255.

• Int16 — 16-bit signed integers. With the sign, the values range
from -32768 to 32767.

• Int32 — 32-bit signed integers. Values range from -231 to
(231-1).

Enable RTDX channel on start-up
Enables the RTDX channel when you start the channel from
MATLAB. With this selected, you do not need to use the enable
function in Link for Code Composer Studio Development Tools
to prepare your RTDX channels. This option applies only to the
channel you specify in Channel name. You do have to open the
channel.

See Also ccsdsp, readmsg, To RTDX, writemsg.

7-196

Idle Task

Purpose Free-running task that executes downstream subsystem

Library c280xspchiplib or c281xspchiplib in Target for TI C2000

Description The Idle Task block, and the subsystem to which it is connected, specify
one or more functions to execute as background tasks. By definition, all
tasks executed through the Idle Task block are of the lowest priority,
lower than that of the base rate task.

Vectorized Output

The output of this block includes a set of two vectors, the Number of
tasks and the corresponding Preemption flag(s). The Preemption
flag(s) vector must be the same length as the Number of tasks vector
unless it has only one element.

If the Preemption flag(s) vector does have one element, then that
value applies to all functions in the downstream subsystem.

If the Preemption flag(s) vector has the same number of elements as
the Number of tasks vector, then each task’s preemption flag value
is the value of the corresponding element in the Preemption flag(s)
vector.

The preemption flag determines whether a given interrupt is
preemptable or not. Preemption overrides prioritization, such
that a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

7-197

Idle Task

Dialog
Box

Number of tasks
The values you enter determine the order in which the functions in
the downstream subsystem are to be executed, while the number
of values you enter corresponds to the number of functions in the
downstream subsystem.

Enter a vector containing the same number of elements as the
number of functions in the downstream subsystem. This vector
can contain no more than 16 elements, and the values must be
from 0 to 15 inclusive.

The value of the first element in the vector determines the order
in which the first function in the subsystem will be executed,
and so on.

For example, if you enter [2,3,1] in this field, you are indicating
that there are three functions to be executed, and that the third
function will be executed first, the first function will be executed
second, and the second function will be executed third.

When all functions have been executed, the Idle Task block cycles
back and repeats the execution of the functions in the same order.

7-198

Idle Task

Preemption flag(s)
The preemption flag determines whether a given interrupt is
preemptable or not. Preemption overrides prioritization, so if you
flag one of these functions as non-preemptable, its execution will
not be suspended by another task even though the functions in the
downstream subsystem all have the lowest priority by definition.

Enter either a vector of one element, in which case that
preemption flag applies to all functions to be executed in the
downstream subsystem, or a vector containing the same number
of elements as the Number of tasks vector, in which case
each preemption flag values applies to the task number in the
corresponding position within its vector. All preemption flag
values must be either 0 (non-preemptable) or 1 (preemptable).

Enable simulation input
Select this check box to make it possible to test asynchronous
interrupt processing in the context of your Simulink model.

Note Using this check box is the only way you can test
asynchronous interrupt processing behavior in Simulink.

See Also C280x Hardware Interrupt, C281x Hardware Interrupt

7-199

Integer part IQN

Purpose Integer part of IQ number

Library tiiqmathlib in Target for TI C2000

Description This block returns the integer portion of an IQ number. The returned
value is a long integer.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN x int32, IQN to
Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude
IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-200

Integer part IQN x int32

Purpose Integer part of result of multiplying IQ number and long integer

Library tiiqmathlib in Target for TI C2000

Description This block multiplies an IQ input and a long integer input and returns
the integer portion of the resulting IQ number as a long integer.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

7-201

Inverse Park Transformation

Purpose Convert rotating reference frame vectors to two-phase stationary
reference frame

Library c28xdmclib in Target for TI C2000

Description This block converts vectors in an orthogonal rotating reference frame to
a two-phase orthogonal stationary reference frame. The transformation
implements these equations:

Id ID IQ
Iq ID IQ

= −
= +

* cos * sin
* sin * cos

θ θ
θ θ

and is illustrated in the following figure.

The inputs to this block are the direct axis (Ds) and quadrature axis (Qs)
components of the transformed signal in the rotating frame and the
phase angle (Angle) between the stationary and rotating frames.

The outputs are the direct axis (Alpha) and the quadrature axis (Beta)
components of the transformed signal.

The variables used in the preceding figure and equations correspond to
the block variables as shown in the following table:

7-202

Inverse Park Transformation

Equation Variables Block Variables

Inputs ID Ds

IQ Qs

θ Angle

Outputs id Alpha

iq Beta

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

References Detailed information on the DMC library is in C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

See Also Clarke Transformation, Park Transformation, PID Controller, Space
Vector Generator, Speed Measurement

7-203

IQN to Float

Purpose Convert IQ number to floating-point number

Library tiiqmathlib in Target for TI C2000

Description This block converts an IQ input to an equivalent floating-point number.
The output is a single floating-point number.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-204

IQN x int32

Purpose Multiply IQ number with long integer

Library tiiqmathlib in Target for TI C2000

Description This block multiplies an IQ input and a long integer input and produces
an IQ output of the same Q value as the IQ input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-205

IQN x IQN

Purpose Multiply IQ numbers with same Q format

Library tiiqmathlib in Target for TI C2000

Description This block multiplies two IQ numbers. Optionally, it can also round and
saturate the result.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Multiply option
Type of multiplication to perform:

• Multiply — Multiply the numbers.

• Multiply with Rounding — Multiply the numbers and round
the result.

• Multiply with Rounding and Saturation — Multiply the
numbers and round and saturate the result to the maximum
value.

7-206

IQN x IQN

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-207

IQN1 to IQN2

Purpose Convert IQ number to different Q format

Library tiiqmathlib in Target for TI C2000

Description This block converts an IQ number in a particular Q format to a different
Q format.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Q value
Q value from 1 to 30 that specifies the precision of the output

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-208

IQN1 x IQN2

Purpose Multiply IQ numbers with different Q formats

Library tiiqmathlib in Target for TI C2000

Description This block multiples two IQ numbers when the numbers are represented
in different Q formats. The format of the result is specified in the dialog
box.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Q value
Q value from 1 to 30 that specifies the precision of the output

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-209

Magnitude IQN

Purpose Magnitude of two orthogonal IQ numbers

Library tiiqmathlib in Target for TI C2000

Description This block calculates the magnitude of two IQ numbers using

a b2 2+

The output is an IQ number in the same Q format as the input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
IQN1 x IQN2, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-210

Park Transformation

Purpose Convert two-phase stationary system vectors to rotating system vectors

Library c28xdmclib in Target for TI C2000

Description This block converts vectors in balanced two-phase orthogonal
stationary systems into an orthogonal rotating reference frame. The
transformation implements these equations

ID Id Iq
IQ Id Iq

= +
= − +

* cos * sin
* sin * cos

θ θ
θ θ

and is illustrated in the following figure.

The variables used in the preceding figure and equations correspond to
the block variables as shown in the following table:

Equation Variables Block Variables

Inputs id Alpha

iq Beta

θ Angle

7-211

Park Transformation

Equation Variables Block Variables

Outputs ID Ds

IQ Qs

The inputs to this block are the direct axis (Alpha) and the quadrature
axis (Beta) components of the transformed signal and the phase angle
(Angle) between the stationary and rotating frames.

The outputs are the direct axis (Ds) and quadrature axis (Qs)
components of the transformed signal in the rotating frame.

The instantaneous inputs are defined by the following equations:

id I t
iq I t

=
= +

* sin()
* sin(/)

ω
ω π 2

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

7-212

Park Transformation

References Detailed information on the DMC library is in C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, PID Controller,
Space Vector Generator, Speed Measurement

7-213

PID Controller

Purpose Digital PID controller

Library c28xdmclib in Target for TI C2000

Description This block implements a 32-bit digital PID controller with antiwindup
correction. The inputs are a reference input (ref) and a feedback input
(fdb) and the output (out) is the saturated PID output. The following
diagram shows a PID controller with antiwindup.

The differential equation describing the PID controller before saturation
that is implemented in this block is

“upresat(t) = up(t) + ui(t) + ud(t)”

where upresat is the PID output before saturation, up is the proportional
term, ui is the integral term with saturation correction, and ud is the
derivative term.

The proportional term is

“up(t) = Kpe(t)”

where Kp is the proportional gain of the PID controller and e(t) is the
error between the reference and feedback inputs.

7-214

PID Controller

The integral term with saturation correction is

where Kc is the integral correction gain of the PID controller.

The derivative term is

where Td is the derivative time of the PID controller. In discrete terms,
the derivative gain is defined as Kd = Td/T, and the integral gain is
defined as Ki = T/Ti, where T is the sampling period and Ti is the
integral time of the PID controller.

The above differential equations are transformed into a difference
equations by backward approximation.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

7-215

PID Controller

Dialog
Box

Proportional gain
Amount of proportional gain (Kp) to apply to the PID

Integral gain
Amount of gain (Ki) to apply to the integration equation

Integral correction gain
Amount of correction gain (Kc) to apply to the integration equation

Derivative gain
Amount of gain (Kd) to apply to the derivative equation.

Minimum output
Minimum allowable value of the PID output

7-216

PID Controller

Maximum output
Maximum allowable value of the PID output

References Detailed information on the DMC library is in C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, Park
Transformation, Space Vector Generator, Speed Measurement

7-217

Ramp Control

Purpose Create ramp-up and ramp-down function

Library c28xdmclib in Target for TI C2000

Description This block implements a ramp-up and ramp-down function. The input
is a target value and the outputs are the set point value (setpt) and
a flag. The flag output is set to 7FFFFFFFh when the output setpt
value reaches the input target value. The target and setpt values
are signed 32-bit fixed-point numbers with Q values between 16 and 29.
The flag is a long number.

The target value is compared with the setpt value. If they are not
equal, the output setpt is adjusted up or down by a fixed step size
(0.0000305).

If the fixed step size is relatively large compared to the target value,
the output may oscillate around the target value.

Dialog
Box

7-218

Ramp Control

Maximum delay rate
Value that is multiplied by the sampling loop time period to
determine the time delay for each ramp step. Valid values are
integers greater than 0.

Minimum limit
Minimum allowable ramp value. If the input falls below this
value, it will be saturated to this minimum. The smallest value
you can enter is the minimum value that can be represented in
fixed-point data format by the input and output blocks to which
this Ramp Control block is connected in your model. If you enter
a value below this minimum, an error occurs at the start of code
generation or simulation. For example, if your input is in Q29
format, its minimum value is -4.

Maximum limit
Maximum allowable ramp value. If the input goes above this
value, it will be reduced to this maximum. The largest value
you can enter is the maximum value that can be represented in
fixed-point data format by the input and output blocks to which
this Ramp Control block is connected in your model. If you enter
a value above this maximum, an error occurs at the start of code
generation or simulation. For example, if your input is in Q29
format, its maximum value is 3.9999....

See Also Ramp Generator

7-219

Ramp Generator

Purpose Generate ramp output

Library c28xdmclib in Target for TI C2000

Description This block generates ramp output (out) from the slope of the ramp
signal (gain), DC offset in the ramp signal (offset), and frequency of
the ramp signal (freq) inputs. All of the inputs and output are 32-bit
fixed-point numbers with Q values between 1 and 29.

Algorithm The block’s output (out) at the sampling instant k is governed by the
following algorithm:

“out(k) = angle(k) * gain(k) + offset(k) ”

For out(k) > 1, out(k) = out(k) - 1. For out(k) < -1, out(k) = out(k) + 1.

Angle(k) is defined as follows:

“angle(k) = angle(k-1) + freq(k) * Maximum step angle

for angle(k) > 1, angle(k) = angle(k) - 1

for angle(k) < -1, angle(k) = angle(k) + 1”

The frequency of the ramp output is controlled by a precision frequency
generation algorithm that relies on the modulo nature of the finite
length variables. The frequency of the output ramp signal is equal to

“f = (Maximum step angle * sampling rate) / 2m ”

where m represents the fractional length of the data type of the inputs.

All math operations are carried out in fixed-point arithmetic, where the
fixed-point fractional length is determined by the block’s inputs.

7-220

Ramp Generator

Dialog
Box

Maximum step angle
The maximum step size, which determines the rate of change of
the output (i.e., the minimum period of the ramp signal).

Examples The following model demonstrates the Ramp Generator block. The
Constant and Scope blocks are available in Simulink Commonly Used
Blocks.

In your model, select Simulation > Configuration Parameters. On
the Solver pane, set Type to Fixed-step and Solver to discrete
(no continuous states). Set the parameter values for the blocks
as shown in the following table.

7-221

Ramp Generator

Block Connects to Parameter Value

Constant Ramp Generator - gain Constant value

Sample time

Output data type

Output scalig value

1

0.001

sfix(32)

2^-9

Constant Ramp Generator -
offset

Constant value

Sample time

Output data type

Output scalig value

0

inf

sfix(32)

2^-9

Constant Ramp Generator - freq Constant value

Sample time

Output data type

Output scalig value

0.001

inf

sfix(32)

2^-9

Ramp
Generator

Scope (Simulink block) Maximum step angle 1

When you run the model, the Scope block generates the following output
(drag a zoom box around a portion of the output to change the display).

7-222

Ramp Generator

The expected frequency of the output is

“f = (maximum step angle * sampling rate) / 2m

f = (1 * 1000) / 2^9 = 1.9531 Hz ”

The expected period is then

“T = 1/f = 0.5120 s ”

which is what the above Scope output shows.

See Also Ramp Control

7-223

Saturate IQN

Purpose Saturate IQ number

Library tiiqmathlib in Target for TI C2000

Description This block saturates an input IQ number to the specified upper and
lower limits. The returned value is an IQ number of the same Q value
as the input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Upper Limit
Maximum real-world value to which to saturate

Lower Limit
Minimum real-world value to which to saturate

7-224

Saturate IQN

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
IQN1 x IQN2, Magnitude IQN, Square Root IQN, Trig Fcn IQN

7-225

SCI Receive

Purpose Configure host-side serial communications interface to receive data
from serial port

Library c2000scilib in Target for TI C2000

Description
Specify the configuration of data being received from the target by
this block.

The data package being received is limited to 16 bytes of ASCII
characters, including package headers and terminators. Calculate
the size of a package by including the package header, or terminator,
or both, and the data size.

Acceptable data types are single, int8, uint8, int16, uint16, int32,
or uint32. The number of bytes in each data type is listed in the
following table:

Data Type Byte Count

single 4 bytes

int8 and uint8 1 byte

int16 and uint16 2 bytes

int32 anduint32 4 bytes

For example, if your data package has package header ’S’ (1 byte) and
package terminator ’E’ (1 byte), that leaves 14 bytes for the actual data.
If your data is of type int8, there is room in the data package for 14
int8s. If your data is of type uint16, there is room in the data package
for 7 uint16s. If your data is of type int32, there is room in the data
package for only 3 int32s, with 2 bytes left over. Even though you
could fit two int8s or one uint16 in the remaining space, you may not,
because you cannot mix data types in the same package.

7-226

SCI Receive

The number of data types that can fit into a data package determine
the data length (see Data length in the Dialog Box description). In the
example just given, the 14 for data type int8 and the 7 for data type
uint16 are the data lengths for each data package, respectively. When
the data length exceeds 16 bytes, unexpected behavior, including run
time errors, may result.

7-227

SCI Receive

Dialog
Box

Port name
You may configure up to four COM ports (COM1 through COM4)
for up to four host-side SCI Receive blocks.

7-228

SCI Receive

Additional package header
This field specifies the data located at the front of the received
data package, which is not part of the data being received, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not received nor are they included
in the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the
target SCI transmit block.

Additional package terminator
This field specifies the data located at the end of the received
data package, which is not part of the data being received,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not received nor are they
included in the total byte count.

Data type
Choice of single, int8, uint8, int16, uint16, int32, or uint32.

The input port of the SCI Transmit block accepts only one of these
values. Which value it accepts is inherited from the data type
from the input (the data length is also inherited from the input).
Data must consist of only one data type; you cannot mix types.

Data length
How many of Data type the block receives (not bytes). Anything
more than 1 is a vector. The data length is inherited from the
input (the data length input to the SCI Transmit block).

7-229

SCI Receive

Initial output
Default value from the Receive block. This value is used,
for example, if a connection time-out occurs and the When
connection timeout field is set to “Output the last received
value”, but nothing yet has been received.

Action Taken when connection times out
Specifies what to output if a connection time-out occurs. If
“Output the last received value” is selected, the last received value
is what is output, unless none has yet been received , in which
case the Initial output is considered the last received value.

If “Output customized value” is selected, a field for specifying a
custom value is added to the dialog box (as shown in the following
figure).

Sample time
Determines how often the SCI Receive block is called (in seconds).
A value of -1 indicates the time is inherited from the model
parameters. To execute this block asynchronously, set Sample
Time to -1, and refer to “Asynchronous Interrupt Processing” on
page 1-14 for a discussion of block placement and other necessary
settings.

Output receiving status
When this field is checked, the SCI Receive block adds another
output port for the transaction status, and appears as shown in
the following figure.

7-230

SCI Receive

The error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was waiting to receive
data

• 2: There is an error in the received data (checksum error)

• 3: SCI parity error flag — Occurs when a character is received
with a mismatch

• 4: SCI framing error flag — Occurs when an expected stop bit
is not found

7-231

SCI Setup

Purpose Configure COM ports for host-side SCI Transmit and Receive blocks

Library c2000scilib in Target for TI C2000

Description
Standardize COM port settings for use by the host-side SCI Transmit
and Receive blocks. Setting COM port configurations globally with the
SCI Setup block avoids conflicts (e.g., the host-side SCI Transmit block
cannot use COM1 with settings different than those the COM1 used by
the host-side SCI Receive block) and requires that you set configurations
only once for each COM port. The SCI Setup block is a stand alone block.

Dialog
Box

7-232

SCI Setup

Communication Mode
Raw data or protocol. Raw data is unformatted and sent whenever
the transmitting side is ready to send, whether the receiving side
is ready or not. No deadlock condition can occur because there
is no wait state. Data transmission is asynchronous. With this
mode, it is possible the receiving side could miss data, but if the
data is noncritical, using raw data mode can avoid blocking any
processes.

If you specify protocol mode, some handshaking between host
and target occurs. The transmitting side sends $SND indicating
that it is ready to transmit. The receiving side sends back $RDY
indicating that it is ready to receive. The transmitting side then
sends data and, when the transmission is completed, it sends a
checksum.

Advantages to using protocol mode include

• Ensures that data is received correctly (checksum)

• Ensures that data is actually received by target

• Ensures time consistency; each side waits for its turn to send
or receive

Note Deadlocks can occur if one SCI Transmit block is trying to
communicate with more than one SCI Receive block on different
COM ports when both are blocking (using protocol mode).
Deadlocks cannot occur on the same COM port.

Baud rate
Choose from 110, 300, 1200, 2400, 4800, 9600, 19200, 38400,
57600, or 115200.

Number of stop bits
Select 1 or 2.

7-233

SCI Setup

Parity mode
Select none, odd, or even.

Timeout
Enter any value greater than or equal to 0, in seconds. When the
COM port involved is using protocol mode, this value indicates
how long the transmitting side waits for an acknowledgement
from the receiving side or how long the receiving side waits for
data. The system displays a warning message if the time-out
is exceeded, every n number of seconds, n being the value in
Timeout.

Note Simulink actually suspends processing for the length of the
time-out, and you will not be able to perform any Simulink action.
If the time-out is set for a long period of time, it may appear that
Simulink has frozen.

7-234

SCI Transmit

Purpose Configure host-side serial communications interface to transmit data to
serial port

Library c2000scilib in Target for TI C2000

Description
Specify the configuration of data being transmitted to the target from
this block.

The data package being sent is limited to 16 bytes of ASCII characters,
including package headers and terminators. Calculate the size of a
package by figuring in package header, or terminator, or both, and the
data size.

Acceptable data types are single, int8, uint8, int16, uint16, int32,
or uint32. The byte size of each data type is as follows:

Data Type Byte Count

single 4 bytes

int8 & uint8 1 byte

int16 & uint16 2 bytes

int32 & uint32 4 bytes

For example, if your data package has package header “S” (1 byte) and
package terminator “E” (1 byte), that leaves 14 bytes for the actual data.
If your data is of type int8, there is room in the data package for 14
int8s. If your data is of type uint16, there is room in the data package
for only 7 uint16s. If your data is of type int32, there is room in the
data package for only 3 int32s, with 2 bytes left over. Even though you
could fit two int8s or one uint16 in the remaining space, you may not,
because you cannot mix data types in the same package.

7-235

SCI Transmit

The number of data types that can fit into a data package determine
the data length (see Data length in the Dialog Box description). In the
example just given, the 14 for data type int8 and the 7 for data type
uint16 are the data lengths for each data package, respectively. When
the data length exceeds 16 bytes, unexpected behavior, including run
time errors, may result.

Dialog
Box

Port name
You may configure up to four COM ports (COM1 through COM4)
for up to four host-side SCI Transmit blocks.

Additional package header
This field specifies the data located at the front of the transmitted
data package, which is not part of the data being transmitted, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in

7-236

SCI Transmit

this field, but the quotes are not sent nor are they included in
the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the
target SCI receive block.

Additional package terminator
This field specifies the data located at the end of the transmitted
data package, which is not part of the data being sent, and
generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not transmitted nor are
they included in the total byte count.

7-237

Space Vector Generator

Purpose Duty ratios for stator reference voltage

Library c28xdmclib in Target for TI C2000

Description This block calculates appropriate duty ratios needed to generate a
given stator reference voltage using space vector PWM technique.
Space vector pulse width modulation is a switching sequence of the
upper three power devices of a three-phase voltage source inverter
and is used in applications such as AC induction and permanent
magnet synchronous motor drives. The switching scheme results in
three pseudosinusoidal currents in the stator phases. This technique
approximates a given stator reference voltage vector by combining the
switching pattern corresponding to the basic space vectors.

The inputs to this block are

• Alpha component — the reference stator voltage vector on the direct
axis stationary reference frame (Ua)

• Beta component — the reference stator voltage vector on the direct
axis quadrature reference frame (Ub)

The alpha and beta components are transformed via the inverse Clarke
equation and projected into reference phase voltages. These voltages
are represented in the outputs as the duty ratios of the PWM1 (Ta),
PWM3 (Tb), and PWM5 (Tc).

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

7-238

Space Vector Generator

Dialog
Box

References Detailed information on the DMC library is in C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, Park
Transformation, PID Controller, Speed Measurement

7-239

Speed Measurement

Purpose Motor speed

Library c28xdmclib in Target for TI C2000

Description This block calculates the motor speed based on the rotor position when
the direction information is available. The inputs are the electrical
angle (theta) and the direction of rotation (dir) from the encoder. The
outputs are the speed normalized from 0 to 1 in the Q format (freq) and
the speed in revolutions per minute (rpm).

Note This block does not call the corresponding Texas Instruments
library function during code generation. Instead, the MathWorks code
uses the TI functions global Q setting to adjust dynamically the Q
format based on the block input. See “About the IQmath Library” on
page 5-2 for more information.

Understanding the Theta Input to the Block

To indicate the rotational position of your motor, the block expects a
32-bit, fixed-point value that varies from 0 to 1.

Block input theta is defined by the following relations:

• A theta input signal equal to 0 indicates 0 degrees of rotation.

• A theta input signal equal to 1 indicates 360 degrees of rotation
(one full rotation).

When the motor spins at a constant speed, theta (in counts) from your
position sensor (encoder) should increase linearly from 0 to 1 and then
abruptly return to 0, like a saw-shaped signal. Adjust the theta signal
output from your encoder to get the correct input signal range for the
Speed Measurement block. Then, convert your encoder signal to 32-bit
fixed-point Q format that meets your resolution needs.

For example, if you are using a position sensor that generates 8000
counts for one full revolution of the motor, (0.0450 degrees per count),

7-240

Speed Measurement

you need to reset your counter to 0 after your counter reaches 8000.
Each time you read your encoder position, you need to convert the
position to a 32-bit, fixed-point Q format value knowing that 8000 is
represented as a 1.0. In this example your format could be Q31.

The Base Speed Parameter

Base speed is the maximum motor rotation rate to measure. This value
is probably not the maximum speed the motor can achieve.

The Speed Measurement block calculates motor speed from two
successive theta readings of the motor position, thetanew and thetaold
(the base speed of the motor; and the time between readings). The
maximum speed the block can calculate occurs when the difference
between two successive samples [abs(thetanew-thetaold)] is 1.0—one full
motor revolution occurs between theta samples.

Therefore, the value you provide for the Base speed (in revolutions per
minute) parameter is the speed, in revolutions per minute, at which
your motor position signal reports one full revolution during one sample
time. While the motor may spin faster than the base speed, the block
cannot calculate the rotation rate correctly in that case. If the motor
completes more than one revolution in one sample time, the calculated
speed may be wrong. The block does not know that between samples
thetanew and thetaold, theta wrapped from 1 back to 0 and started
counting up again.

The time difference between the two theta readings is the sample time.
The Speed Measurement block inherits the sample time from the
upstream block in your model. You set the sample time in the upstream
block and then the Speed Measurement block uses that sample time to
calculate the rotation rate of the motor.

The Sample Time Calculation

Motor speed measurements depend on the sample time you set in the
model. Your sample time must be short enough to measure the full
speed of the motor.

Two parameters drive your sample time—motor base speed and encoder
counts per revolution. To be able to measure the maximum rotation

7-241

Speed Measurement

rate, you must take at least one sample for each revolution. For a motor
with base speed equal to 1000 rpm, which is 16.67 rps, you need to
sample at 1/16.67 s, which is 0.06 s/sample. This sample rate of 16.67
samples per second is the maximum sample time (lowest sample rate)
that assures you can measure the full speed of the motor.

Using the same sample rate assumption, the minimum speed the block
can measure depends on the encoder counts per revolution. At the
minimum measurable motor speed, the encoder generates one count per
sample period—16.67 counts per second. For an encoder that generates
8000 counts per revolution, this results in being able to measure a speed
of [(16.67 counts/s) * (0.045 degrees/count)] = 0.752 degrees per second,
or about 45 degrees per minute—one-eighth RPM.

The Differentiator Constant

The differentiator constant is a scalar value applied to the block output.
For example, setting it to 1 produces no effect on the output. Setting
the constant to 1/4 multiplies the frequency and revolutions per minute
outputs by 0.25. This setting can be useful when your motor has
multiple pole pairs, and one electrical revolution is not equal to one
mechanical revolution. The constant lets you account for the difference
between electrical and mechanical rotation rates.

The Low-Pass Filter Constant

This block includes filtering capability if your position signal is noisy.
Setting the filter constant to 0 disables the filter. Setting the filter
constant to 1 filters out the entire signal and results in a block output
equal to 0. Use a simulation to determine the best filter constant for
your system. Your goal is to filter enough to remove the noise on your
signal but not so much that the speed measurements cannot react to
abrupt speed changes.

7-242

Speed Measurement

Dialog
Box

Base speed
Maximum speed of the motor to measure in revolutions per
minute.

Differentiator constant
Constant used in the differentiator equation that describes the
rotor position.

Low-pass filter constant
Constant to apply to the lowpass filter. This constant is
1/(1+T*(2πfc)), where T is the sampling period and fc is the cutoff
frequency. The 1/(2πfc) term is the lowpass filter time constant.
This block uses a lowpass filter to reduce noise generated by the
differentiator.

Example The following example demonstrates how you configure the Speed
Measurement block.

7-243

Speed Measurement

Configuring the Speed Measurement Block to Measure
Motor Speed

Use the following process to set up the Speed Measurement block
parameters.

1 Add the block to your model.

2 Open the block dialog box to view the block parameters.

3 Set the value for Base Speed to the maximum speed to measure, in
revolutions per minute.

4 Enter values for Differentiator and Low-Pass Filter Constant.

5 Click OK to close the dialog box.

Setting the Sample Time to Measure Motor Speed

Use the following process to set the sample time for measuring the
motor speed.

1 Open the block dialog box for the block before the Speed Measurement
block in your model (the upstream or driving block).

2 Set the sample time parameter in the upstream block according to the
sample time guidelines described in The Sample Time Calculation.

3 Click OK to close the dialog box.

References For detailed information on the DMC library, refer to C/F 28xx Digital
Motor Control Library, SPRC080, available at the Texas Instruments
Web site.

See Also Clarke Transformation, Inverse Park Transformation, Park
Transformation, PID Controller, Space Vector Generator

7-244

Square Root IQN

Purpose Square root or inverse square root of IQ number

Library tiiqmathlib in Target for TI C2000

Description This block calculates the square root or inverse square root of an IQ
number and returns an IQ number of the same Q format. The block
uses table lookup and a Newton-Raphson approximation.

Negative inputs to this block return a value of zero.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Function
Whether to calculate the square root or inverse square root

• Square root (_sqrt) — Compute the square root.

• Inverse square root (_isqrt) — Compute the inverse
square root.

7-245

Square Root IQN

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
IQN1 x IQN2, Magnitude IQN, Saturate IQN, Trig Fcn IQN

7-246

Switch External Mode Configuration

Purpose Configure model for external mode or executable building

Library Target for TI C2000/ C2000 Driver Library/ Utilities

Description Place the Switch External Mode Configuration block in your model and
double-click it to run a convenience function to configure your model
for building an executable, or executing your model in external mode.
When you double-click the block, a dialog box appears. Choose either
Building an executable or External mode, and click OK.

When you choose building an executable, messages at the command line
inform you the following steps are taken to configure your model:

1 Inline parameters are selected (under Optimization in the
Configuration Parameters dialog box). This is required for ASAP2
generation

2 Normal simulation mode is selected (in the Simulation menu, and
drop-down list in the toolbar).

3 ASAP2 is selected as the Interface (under Real-Time Workshop,
Interface, in the Data Exchange pane, in the Configuration
Parameters dialog box).

When you choose external mode, messages at the command line inform
you the following steps are taken to configure your model:

1 Inline parameters are selected (under Optimization in the
Configuration Parameters dialog box). This is required for external
mode.

2 External simulation mode is selected (in the Simulation menu, and
drop-down list in the toolbar).

3 External mode is selected as the Interface (under Real-Time
Workshop, Interface, in the Data Exchange pane, in the Configuration
Parameters dialog box).

7-247

Switch External Mode Configuration

See“Using External Mode” on page 2-9 for instructions for converting a
model to use external mode for signal logging and parameter tuning.

7-248

To Memory

Purpose Write data to target memory

Library c280xspchiplib or c281xspchiplib in Target for TI C2000

Description This block sends data of the specified data type to a particular memory
address on the target.

Dialog
Box

Parameters Pane

Memory address
Address of the target memory location, in hexadecimal, to which
to write data

Data type
Type of data to be written to the above memory address. Valid
data types are double, single, int8, uint8, int16, uint16,

7-249

To Memory

int32, and uint32. The data is cast from the selected data type
to 16-bit data.

Write at initialization
Whether to write the specified Value at program start

Value
First value of data to be written to memory at program start

Write at termination
Whether to write the specified Value at program end

Value
Last value of data to be written to memory at program termination

Write at every sample time
Whether to write data in real time during program execution

Note If your To Memory block is set to write to memory at every
sample time interval (that is, it has an incoming port) and it
receives a vector signal input of N elements, a corresponding
memory region starting with the specified Memory address is
updated at every sample time. If you specify an Initial and/or
Termination value, that value is written to all locations in the
same memory region at initialization and/or termination.

If your To Memory block does not write to memory at every sample
time (that is, it does not have an incoming port) and you specify
an Initial and/or Termination value, that value is written to a
single memory location that corresponds to the specified Memory
address.

7-250

To Memory

Custom Code Pane

Insert custom code before memory write
C code to execute before writing to the specified memory address.
An example of code that might be inserted here is

asm (" EALLOW ")

which enables write access to the device emulation registers on
the C2812 DSP.

Insert custom code after memory write
C code to execute after writing to the specified memory address.
An example of code that may be inserted here is

asm (" DIS ")

which disables write access to the device emulation registers on
the C2812 DSP.

See Also From Memory

7-251

To RTDX

Purpose Add RTDX output channel

Library rtdxBlocks in Target for TI C2000

Description When you generate code from Simulink in Real-Time Workshop with a
To RTDX block in your model, code generation inserts the C commands
to create an RTDX output channel on the target. Output channels
transfer data from the target to the host.

The generated code contains this command:

RTDX_enableOutput(&channelname)

where channelname is the name you enter in the channelName field
in the To RTDX dialog box.

Note To RTDX blocks work only in code generation and when your
model runs on your target. In simulations, this block does not perform
any operations.

To use RTDX blocks in your model, you must do the following:

1 Add one or more To RTDX or From RTDX blocks to your model.

2 Download and run your model on your target.

3 Enable the RTDX channels from MATLAB or use Enable RTDX
channel on start-up on the block dialog.

4 Use the readmsg and writemsg functions in MATLAB to send and
retrieve data from the target over RTDX.

7-252

To RTDX

Dialog
Box

Channel name
Name of the output channel to be created by the generated code.
The channel name must meet C syntax requirements for length
and character content.

Enable blocking mode
Enables blocking mode (selected by default). In blocking mode,
writing a message is suspended while the RTDX channel is busy,
that is, when data is being written in either direction. The code
waits at the RTDX_write call site while the channel is busy. Note
that any interrupt of the higher priority will temporary divert the
program execution from this site, but it will eventually come back
and wait until the channel stops writing.

When blocking mode is not enabled (when the check box is
cleared), writing a message is abandoned if the RTDX channel is
busy, and the code proceeds with the current iteration.

Enable RTDX channel on start-up
Enables the RTDX channel when you start the channel from
MATLAB. With this selected, you do not need to use the enable
function in Link for Code Composer Studio Development Tools
to prepare your RTDX channels. This option applies only to the

7-253

To RTDX

channel you specify in Channel name. You do have to open the
channel.

See Also From RTDX

7-254

Trig Fcn IQN

Purpose Sine, cosine, or arc tangent of IQ number

Library tiiqmathlib in Target for TI C2000

Description This block calculates basic trigonometric functions and returns the
result as an IQ number. Valid Q values for _IQsinPU and _IQcosPU are
1 to 30. For all others, valid Q values are from 1 to 29.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Function
Type of trigonometric function to calculate:

• _IQsin — Compute the sine (sin(A)), where A is in radians.

• _IQsinPU — Compute the sine per unit (sin(2*pi*A)), where
A is in per-unit radians.

• _IQcos — Compute the cosine (cos(A)), where A is in radians.

• _IQcosPU — Compute the cosine per unit (cos(2*pi*A)),
where A is in per-unit radians.

7-255

Trig Fcn IQN

• _IQatan — Compute the arc tangent (tan(A)), where A is in
radians.

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
IQN1 x IQN2, Magnitude IQN, Saturate IQN, Square Root IQN

7-256

Index

IndexA
Absolute IQN block 7-2
acquisition window

ADC blocks
ACQ_PS 3-2

ADC blocks
C281x 7-105

applications
TI C2000 1-2

Arctangent IQN block 7-3
ASAP2 files, generating 2-18
asymmetric vs. symmetric waveforms 7-139
asynchronous interrupt processing 1-14

B
blocks

adding to model 1-31
CAN Calibration Protocol (C2000) 7-10
recommendations 1-20
Switch External Mode Configuration 7-247

C
C2000 Library

SCI Receive
Host side 7-226

SCI Setup
Host side 7-232

SCI Transmit
Host side 7-235

c2000lib startup 1-26
C280x ADC block 7-5
C280x eCAN Receive block 7-15
C280x eCAN Transmit block 7-19
c280x eCAP block 7-23
C280x ePWM block 7-34
C280x eQEP block 7-54
c280x GPIO block 7-70 7-78
C280x Hardware Interrupt block 7-80

C280x SCI Receive block 7-85
C280x SCI Transmit block 7-92
C280x SPI Receive block 7-99
C280x SPI Transmit block 7-102
C280x SW Int Trigger 7-95
C281x ADC block 7-105
C281x CAP block 7-110
C281x eCAN Receive block 7-116
C281x eCAN Transmit block 7-120
C281x GPIO Digital Input block 7-124
C281x GPIO Digital Output block 7-128
C281x PWM block 7-137
C281x QEP block 7-148
C281x SCI Receive block 7-151
C281x SCI Transmit block 7-158
C281x SPI Receive block 7-165
C281x SPI Transmit block 7-168
C281x SW Int Trigger 7-161
C281x Timer block 7-171
CAN Calibration Protocol (C2000) block 7-10
CAN/eCAN

C280x Transmit block 7-19
C280xReceive block 7-15
C281x Transmit block 7-120
C281xReceive block 7-116
timing parameters

bit rate 2-3
capture block

C281x 7-110
CCS 1-10

See also Code Composer Studio
Clarke Transformation block 7-174
clock speed 1-14
Code Composer Studio 1-10
code generation

overview 1-33
code optimization 5-10
configuration default 1-10
configuration parameters

setting 1-22

Index-1

Index

conversion
float to IQ number 7-188
IQ number to different IQ number 7-208
IQ number to float 7-204

CPU clock speed 1-14
Custom Board block 7-177

D
data type support 1-12
data types

conversion 5-9
deadband

C281x PWM 7-144
default build configuration 1-10
device driver blocks

CAN Calibration Protocol (C2000) 7-10
digital motor control. See DMC library
Division IQN block 7-179
DMC library

Clarke Transformation 7-174
Inverse Park Transformation 7-202
Park Transformation 7-211
PID controller 7-214
ramp control 7-218
ramp generator 7-220
Space Vector Generator 7-238
Speed Measurement 7-240

duty ratios 7-238

E
enhanced capture channel 7-23
enhanced quadrature encoder pulse module

C280x 7-54
ePWM blocks

C280x 7-34

F
fixed-point numbers 5-4

flash
stand alone applications 4-2

flash memory 1-6
Float to IQN block 7-188
floating-point numbers

convert to IQ number 7-188
four-quadrant arctangent 7-3
Fractional part IQN block 7-189
Fractional part IQN x int32 block 7-190
From Memory block 7-191
From RTDX block 7-193

G
GPIO input

c280x 7-70
C281x 7-124

GPIO output
c280x 7-78
C281x 7-128

H
hardware 1-4
high-speed peripheral clock 1-14

I
I/O

C281x input 7-124
C281x output 7-128

Idle Task block 7-197
Integer part IQN block 7-200
Integer part IQN x int32 block 7-201
interrupt

software triggered for C280x 7-95
software triggered for C281x 7-161

Inverse Park Transformation block 7-202
IQ Math library 5-2

Absolute IQN block 7-2
Arctangent IQN block 7-3

Index-2

Index

building models 5-9
code optimization 5-10
common characteristics 5-3
Division IQN block 7-179
Float to IQN block 7-188
Fractional part IQN block 7-189
Fractional part IQN x int32 block 7-190
Integer part IQN block 7-200
Integer part IQN x int32 block 7-201
IQN to Float block 7-204
IQN x int32 block 7-205
IQN x IQN block 7-206
IQN1 to IQN2 block 7-208
IQN1 x IQN2 block 7-209
Magnitude IQN block 7-210
Q format notation 5-5
Saturate IQN block 7-224
Square Root IQN block 7-245
Trig Fcn IQN block 7-255

IQ numbers
convert from float 7-188
convert to different IQ 7-208
convert to float 7-204
fractional part 7-189
integer part 7-200
magnitude 7-210
multiply 7-206
multiply by int32 7-205
multiply by int32 fractional result 7-190
multiply by int32 integer part 7-201
square root 7-245
trigonometric functions 7-255

IQN to Float block 7-204
IQN x int32 block 7-205
IQN x IQN block 7-206
IQN1 to IQN2 block 7-208
IQN1 x IQN2 block 7-209

M
Magnitude IQN block 7-210
math blocks. See IQ Math library
MathWorks software 1-6
memory management 1-23
messages

F2808 eZdsp 7-16
F2812 eZdsp 7-117

model
add blocks 1-31
building overview 1-23
creation overview 1-19
IQmath library 5-9

multiplication
IQN x int32 7-205
IQN x int32 fractional part 7-190
IQN x int32 integer part 7-201
IQN x IQN 7-206
IQN1 x IQN2 7-209

O
operating system requirements 1-4
optimization code 5-10

P
Park Transformation block 7-211
phase conversion 7-174
PID controller 7-214
PWM blocks

C281x 7-137

Q
Q format 5-5
quadrature encoder pulse circuit

C28x 7-148

Index-3

Index

R
ramp control block 7-218
ramp generator block 7-220
reference frame conversion

inverse Park transformation 7-202
Park transformation 7-211

reset 1-24
RTDX

from 7-193
to 7-252

S
sample time

F2812 eZdsp 7-17
Saturate IQN block 7-224
scheduling 1-13
SCI Receive

Host side 7-226
SCI Setup

Host side 7-232
SCI Transmit

Host side 7-235
SCI Transmit and Receive blocks

Host side
Setup 7-232

serial communications interface
C280x receive 7-85
C280x transmit 7-92
C281x receive 7-151
C281x transmit 7-158

serial peripheral interface
C280x receive 7-99

C280x transmit 7-102
C281x receive 7-165
C281x transmit 7-168

setting up hardware 1-4
signed fixed-point numbers 5-5
simulation parameters

automatic 1-28
software requirements 1-6
Space Vector Generator block 7-238
Speed Measurement block 7-240
Square Root IQN block 7-245
startup c2000lib 1-26
Switch External Mode Configuration block 7-247

T
target configuration

example 6-2 7-184
F2808 eZdsp 6-2 7-180

target model creation 1-19
Target Preferences blocks

Custom Board 7-177
TI software 1-6
timing

interrupts 1-13
To Memory block 7-249
To RTDX block 7-252
Trig Fcn IQN block 7-255

W
waveforms 7-139

Index-4

	toc
	Getting Started
	What Is Target for TI C2000?
	Introduction
	Overview of Target for TI C2000
	Suitable Applications

	Setting Up and Configuring
	Platform Requirements — Hardware and Operating System
	Supported Hardware for Targets
	Running Code from Flash Memory

	Software Requirements
	MathWorks Software
	Texas Instruments Software

	Verifying the Configuration

	Target for TI C2000 and Code Composer Studio
	Using Code Composer Studio with Target for TI C2000
	Default Project Configuration
	Default Build Options in the custom_MW Configuration

	Data Type Support
	Scheduling and Timing
	Overview
	Timer-Based Interrupt Processing
	High-Speed Peripheral Clock

	Asynchronous Interrupt Processing

	Overview of Creating Models for Targeting
	Accessing the Target for TI C2000 Block Library
	Online Help
	Blocks with Restrictions
	Blocks to Avoid Using in Your Models
	Blocks That Require Specific Settings

	S-Function Builder Blocks
	Setting Simulation Configuration Parameters
	System Target Types and Memory Management

	Building Your Model
	F2812 eZdsp and F2808 eZdsp Reset Sequence

	Using the c2000lib Blockset
	Introduction
	Hardware Setup
	Starting the c2000lib Library
	General
	Chip Support
	Optimized Libraries

	Setting Up the Model
	Adding Blocks to the Model
	Generating Code from the Model

	Configuring Timing Parameters for CAN Blocks
	Blocks Where the Bit Rate Cannot Be Set Directly
	Setting Timing Parameters
	Accessing the Timing Parameters
	Equations for Bit Rate Calculation
	CAN Bit Timing Examples

	Parameter Tuning and Signal Logging
	Overview
	Using External Mode
	Configuring the Host Vector CAN Application Channel
	Using Supported Objects and Data Types
	Tuning Parameters
	Viewing and Storing Signal Data
	Manual Configuration For External Mode
	Limitations

	Using a Third Party Calibration Tool

	Configuring Acquisition Window Width for ADC Blocks
	What Is an Acquisition Window?
	Configuring ADC Parameters for Acquisition Window Width
	Accessing the ADC Parameters
	Examples

	Creating Stand-Alone Applications by Saving Code into Flash Memo
	The Need for Stand-Alone Applications
	Generating Code for Flash Memory
	Running Code from Flash Memory

	Using the IQmath Library
	About the IQmath Library
	Introduction
	Common Characteristics

	Fixed-Point Numbers
	Notation
	Signed Fixed-Point Numbers
	Q Format Notation
	Example — Q.15
	Example — Q1.30
	Example — Q-2.17
	Example — Q17.-2

	Building Models
	Overview
	Converting Data Types
	Using Sources and Sinks
	Choosing Blocks to Optimize Code

	Blocks — By Category
	C2000 Target Preferences (c2000tgtpreflib)
	Host-Side CAN Blocks (c2000canlib)
	Host-Side SCI Blocks (c2000scilib)
	C2000 RTDX Instrumentation (rtdxBlocks)
	C280x DSP Chip Support (c280xdspchiplib)
	C281x DSP Chip Support (c281xdspchiplib)
	C28x Digital Motor Control (c28xdmclib)
	C28x IQmath (tiiqmathlib)

	Blocks — Alphabetical List
	Index

	tables
	Required TI Software for Targeting Your TI C2000 Hardware
	C280x Peripheral Interrupt Vector Values
	C280x Peripheral Interrupt Vector Values
	GPIO A MUX
	GPIO B MUX
	GPIO A MUX
	GPIO B MUX
	C281x Peripheral Interrupt Vector Values
	C281x Peripheral Interrupt Vector Values

